La Ciencia Ficción Se Vuelve Realidad: Impresionantes Avances Del 2012

Vivimos en un tiempo muy interesante en la historia humana. Con la explosión del desarrollo tecnológico en las últimas décadas, cada año más y más tecnologías que fueron consideradas ciencia ficción cobran vida, haciéndonos soñar lo que el futuro nos depara. Desde implantes oculares y brazos robóticos controlados con la mente, hasta la posibilidad de imprimir una casa, este año tuvimos avances muy interesantes.

  1. Implantes de ojos le dan visión a ciegos
    Implante que permite a ciegos ver
    Implante que permite a ciegos ver

    Dos hombres ciegos en el Reino Unido fueron provistos con implantes oculares durante una cirugía de ocho horas con resultados prometedores. Después de años de ceguera, ambos han recuperado visión “útil” en solo semanas, capturando los bordes de objetos y soñando en color. Los doctores esperan una mejora continua conforme sus cerebros se reconectan para la visión.Fuente: telegraph.co.uk

  2. La NASA comienza a utilizar exoesqueletos
    Exoesqueleto de la NASA
    Exoesqueleto de la NASA

    El Exoesqueleto robótico X1 pesa 23 kilos y contiene cuatro articulaciones motorizadas con seis pasivas. Con dos configuraciones, puede ya sea dificultar el movimiento, lo que le permitiría a los astronautas ejercitar en el espacio, o mejorar el movimiento, asistiendo a parapléjicos a caminar.Fuente: news.cnet.com

  3. Usando la mente para controlar un brazo robótico
    Brazo robótico controlado por la mente
    Brazo robótico controlado por la mente

    En la Universidad de Pittsburgh, el departamento de neurobiología trabajó con Jan Scheuermann durante el transcurso de 13 semanas para crear un brazo robótico controlado solo por el poder de la mente de Scheuermann.El equipo implantó en ella dos microelectrodos intracorticales de 96 canales. Ubicados en la corteza motora, que controla todos los movimientos de extremidades, el proceso de integración fue más rápido de lo que todos esperaban. Al segundo día, Jan podía usar su nuevo brazo en un espacio tridimensional. Al final de las 13 semanas, era capaz de realizar tareas complejas con movimiento en siete dimensiones, igual que un brazo biológico.

    Fuente: gizmodo.com

  4. Imprimiendo casas con una impresora tridimensional
    Casa creada por impresora tridimensional
    Casa creada por impresora tridimensional

    La impresora en forma de “D”, creada por Enrico Dini, es capaz de imprimir un edificio de dos pisos, completo con cuartos, escaleras, tuberías y particiones. Usando nada más que arena y un compuesto orgánico para unirla, el material resultante tiene la misma durabilidad del concreto reforzado con una apariencia de mármol. El proceso de construcción se lleva aproximadamente un cuarto del tiempo de los edificios tradicionales, mientras que se ajuste a estructuras redondeadas, y puede ser construido sin conocimientos o habilidades especializadas.Fuente: gizmag.com

  5. El Bosón de Higgs fue encontrado
    Bosón de Higgs encontrado
    Bosón de Higgs encontrado

    Durante el verano, el centro de investigación multinacional CERN confirmó que había descubierto una partícula que se comportaba lo suficiente como lo esperado del Bosón de Higgs como para darle el nombre. Para los científicos, esto significa que puede haber un campo de Higgs, similar a un campo electromagnético. A su vez, esto podría darle a los científicos la habilidad de interactuar con la masa de la misma forma que interactuamos con los campos magnéticos.Fuente: forbes.com

  6. Piel en spray
    Piel en Spray
    Piel en Spray

    ReCell por Avista Medical es un gran avance médico para las víctimas de quemaduras severas. La tecnología utiliza una pieza de piel del tamaño de una estampilla del paciente, entonces la muestra es mezclada con una enzima cultivada de puercos y es aplicada de vuelta en el sitio quemado en forma de spray. Cada pequeño injerto se expande, cubriendo el espacio de una página de un libro dentro de una semana. Ya que la piel donada viene del mismo paciente, el riesgo de rechazo es mínimo.Fuente: news.discovery.com

  7. ADN fotografiado por primera vez
    Fotografía de ADN
    Fotografía de ADN

    Usando un microscópio de electrones, Enzo di Fabrizio y su equipo en el Instituto Italiano de Tecnología en Genoa tomaron las primeras fotos de la famosa doble hélice.Fuente: newscientist.com

  8. Voyager I abandona el sistema solar
    Voyager I
    Voyager I

    Lanzado en 1977, el Voyager I es el primer objeto hecho por el hombre en volar más allá de los confines de nuestro sistema solar hacía la oscuridad del espacio profundo. Fue originalmente diseñado para enviar a casa imágenes de Saturno y Júpiter, pero los científicos de la NASA se dieron cuenta de que eventualmente la sonda podría flotar hacia el gran desconocido. Con ese propósito, una grabación fue colocada en el Voyager I con sonidos que van desde música hasta los llamados de ballenas, y saludos en 55 lenguajes.Fuente: space.com

  9. Quijada implantada fue creada con impresora tridimensional
    Quijada creada con impresora tridimensional
    Quijada creada con impresora tridimensional

    Una quijada personalizada fue creada para un paciente de 83 años utilizando polvo de titanio y recubrimiento biocerámico. La exitosa cirugía, primera de este tipo, abre la puerta a reemplazos óseos personalizados y, quizá un día, la habilidad de imprimir nuevos músculos y órganos.Fuente: telegraph.co.uk

  10. El cerebro humano fue hackeado
    Dispositivo que lee ondas cerebrales
    Dispositivo que lee ondas cerebrales

    Usenix Security puso a un equipo de investigadores a que usaran tecnología ampliamente disponible para mostrar cuan vulnerable es realmente el cerebro humano. Con una diadema equipada para obtener electroencefalografías y el software para encontrar lo que las neuronas activándose están intentando hacer, busca picos en actividad cerebral cuando el usuario reconoce algo como un número del PIN de un cajero automático o la cara de un niño.Fuente: extremetech.com

Investigadores construyen un kit de herramientas para biología sintética

Factor de transcripción
Imagen: Christine Daniloff/iMol

Ingenieros diseñan nuevas proteínas que puedan ayudar a controlar los novedosos circuitos genéticos en las células.

Anne Trafton, MIT News Office. Original (en inglés).

Por cerca de 12 años, los biólogos sintéticos han estado trabajando en maneras de diseñar circuitos genéticos para realizar funciones novedosas como fabricar nuevas drogas, producir combustible e incluso programar el suicidio de células cancerosas.

Alcanzar estas complejas funciones requiere controlar muchos componentes genéticos y celulares, incluyendo no solo genes sino también las proteínas regulatorias que los encienden y los apagan. En una célula viviente, las proteínas llamadas factores de transcripción comúnmente regulan este proceso.

Hasta ahora, la mayoría de los investigadores han diseñado sus circuitos genéticos usando factores de transcripción encontrados en bacterias. Sin embargo, estos no siempre se traducen bien a células no bacteriales y puede ser un desafío aescalarlos, haciendo más difícil crear circuitos complejos, dice Timothy Lu, profesor asistente de ingeniería eléctrica y ciencia computacional y un miembro del Laboratorio de Investigación de Electrónica.

Lu y sus colegas en la Universidad de Boston, la Escuela de Medicina de Harvard y el Hospital General de Massachusetts han encontrado un nuevo método para diseñar factores de transcripción para células no bacteriales (en este caso, células de levadura). Su librería inicial de 19 factores de transcripción debería ayudar a superar el cuello de botella existente que ha limitado las aplicaciones de la biología sintética, dice Lu.

Este proyecto es parte de un esfuerzo más grande que se está llevando a cabo para desarrollar “partes” genéticas que pueden ser ensambladas en circuitos para alcanzar funciones específicas. A través de este esfuerzo, Lu y sus colegas esperan hacer más fácil el desarrollo de circuitos para hacer exactamente lo que quiere un investigador.

“Si observas el registro de partes, muchas de estas partes vienen de un revoltijo de organismos diferentes. Los juntas en tu organismo elegido y esperas que funcione,” dice Lu, el autor correspondiente de un artículo describiendo la nueva técnica de diseño de factor de transcripción en la edición del 3 de agosto del diario Cell.

Los autores principales del artículo incluyen a Ahmad Khalil, profesor asistente de ingeniería biomédica en la Universidad de Boston, LU, y el posdoctorado de la universidad de Boston Caleb Bashor. Otros autores son la estudiante graduada de Harvard Cherie Ramirez; la investigadora asistente de la Universidad de Boston Nora Pyenson; Keith Joung, jefe asociado de patología para la investigación en el Hospital General de Massachusetts; y James Collins, profesor de ingeniería biomédica en la Universidad de Boston.

Uniendo ADN

Avances recientes en el diseño de proteínas que unen el ADN le dieron a los investigadores el impulso que necesitaban para comenzar a contruir una nueva librería de factores de transcripción.

Dedo de cinc
Dedo de cinc Cys2His2. Imagen: Thomas Splettstoesser

Los factores de transcripción incluyen una sección que reconoce y se anexa a una secuencia específica de ADN llamada promotor. La proteína recluta entonces una enzima llamada ARN polimerizado, que comienza el copiado del gen en el mensajero ARN, la molécula que carga las instrucciones genéticas al resto de la célula.

En muchos factores de transcripciones, la sección que une el ADN consiste de proteínas conocidas como dedos de cinc, que apuntan a diferentes secuencias de ADN dependiendo de su estructura. Los investigadores basaron sus nuevos diseños de dedos de cinc en la estructura de una proteína dedo de cinc que ocurre naturalmente. “Al modificar los aminoácidos específicos dentro del dedo de cinc, puedes hacer que se unan con nuevas secuencias objetivo”, dice Lu.

Los investigadores conectaron los nuevos dedos de cinc a segmentos activadores existentes, permitiéndoles crear muchas combinaciones de fuerza variable y especificidad. También diseñaron factores de transcripción que trabajan juntos, para que un gen solo pueda ser encendido si los factores se unen uno con el otro.

Andrew Ellington, un profesor de bioquímica en la Universidad de Texas en Austin, dice que el trabajo es un importante paso hacia crear circuitos más complejos en células no bacteriales. “Están creando un montón de nuevos factores de transcripción, y lo han hecho en una manera modular, creando herramientas adicionales que la gente puede usar para diseñar nuevos circuitos”, dice Ellington, quien no fue parte del equipo investigador.

Hacia mayor complejidad

Dichos factores de transcripción deberían hacer hacer más fácil para los biólogos sintéticos el diseñar circuitos para realizar tareas como sentir las condiciones ambientales de una célula.

Factor de transcripción
Investigadores diseñaron nuevos factores de transcripción para unirse al ADN y encender genes específicos. Imagen: Christine Daniloff/iMol

En este artículo, los investigadores contruyeron algunos circuitos simples en levadura, pero planean desarrollar circuitos más complejos en estudios futuros. “No contruimos un circuito masivo de 10 o 15 factores de transición, pero eso es algo que definitivamente estamos planeando hacer en el futuro”, dice Lu. “Queremos ver que tanto podemos escalar el tipo de circuitos que podemos construir con este marco de trabajo”.

Los circuitos de biología sintética pueden ser análogos o digitales, al igual que los circuitos eléctricos. Los circuitos digitales incluyen funciones lógicas como compuertas AND y OR, que le permiten a las células hacer decisiones inequívocas como si deben pasar por un suicidio celular programado. Las funciones análogas son útiles para sensores que toman mediciones continuas de una molécula específica en la célula o su entorno. Al combinar estos circuitos, los investigadores pueden crear sistemas más complejos en los que una decisión digital sea activada una vez que el sensor alcanza un cierto umbral.

Además de construir circuitos más complejos, los investigadores están planeando tratar sus nuevos factores de transcripción en otras especies de levadura, y eventualmente en células de mamíferos, incluyendo células humanas. “Lo que realmente esperamos al final del día es que la levadura sea una buena plataforma de lanzamiento para diseñar estos circuitos”, dice Lu. “Trabajando en células de mamíferos es más lento y tedioso, así que si podemos construir circuitos verificados y partes en levadura y entonces importarlos, eso sería la situación ideal. Pero no hemos probado que podemos hacer eso todavía”.

La investigación fue patrocinada por el Instituto Médico Howard Hughes, los Institutos Nacionales de Salud, la Oficina de Investigación Naval, la Agencia de Proyectos de Investigación Avanzada para la Defensa (DARPA – Defense Advanced Research Projects Agency) y la Fundación Nacional de Ciencia, todos de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

La terapia génica podría ser pronto aprobada en Europa

ADN
ADN

Europa se encuentra a un pequeño paso de aprobar la terapia génica, mediante la cual se altera el ADN de los pacientes con el fin de tratar enfermedades hereditarias que pasan de padre a hijo.

La Agencia Europea de Medicamentos recomendó el uso de un medicamento (Glybera) para el tratamiento de la deficiencia de lipoproteinlipasa, llamada también quilomicronemia, que hace que quienes la padecen no puedan digerir las grasas apropiadamente.

Una en un millón de personas sufre esta enfermedad, y lo que ocurre es que tienen copias dañadas de un gen esencial para romper la grasa. La única manera de controlar la quilomicronemia es llevando una dieta muy baja en grasas.

La terapia génica pretende que, si el problema está en una parte del código genético del paciente, entonces se reemplace esa parte del código, que en este caso sería lo más conveniente para aquellos que tienen pancreatitis aguda y no pueden controlar su condición mediante la dieta.

Sin embargo, la Comisión Europea está por tomar la decisión final, lo cual no es tan fácil si se toma en cuenta que la terapia resultó en muerte para un adolescente estadounidense, y en leucemia para otros individuos.

No hay terapias génicas disponibles fuera de un laboratorio de investigación en Europa o los Estados Unidos.

Referencia
http://www.bbc.co.uk/ (en inglés)

Cómo la infección puede llevar al cáncer

Un nuevo estudio del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) ofrece una mirada profunda a los cambios químicos y genéticos que ocurren cuando la inflamación progresa en cáncer.

Anne Trafton, MIT News Office. Original (en inglés).

Biopsia endoscópica mostrando una inflamación granulomatosa del colon en un caso de enfermedad de Crohn.
Biopsia endoscópica mostrando una inflamación granulomatosa del colon en un caso de enfermedad de Crohn.
Imagen: wikipedia/nephron

Uno de los factores de riesgo más grandes para el cáncer de hígado, colon o estómago es la inflamación crónica de esos órganos, comúnmente causada por infecciones virales o bacteriales. Un nuevo estudio del MIT ofrece la mirada más profunda hasta ahora sobre cómo dichas infecciones provocan que los tejidos se vuelvan cancerosos.

El estudio, que apareció en la edición en línea de Proceedings of the National Academy of Sciences (PNAS) de la semana del 11 de Junio, rastreó una variedad de cambios genéticos y químicos en los hígados y cólones de ratones infectados con Heliobacter hepaticus, una bacteria similar a la Helicobacter pylori, la que causa úlceras estomacales y cáncer en humanos.

Los hallazgos podrían ayudar a los investigadores a desarrollar maneras de predecir las consecuencias a la salud de inflamación crónica, y diseñar drogas que detengan dicha inflamación.

“Si entiendes el mecanismo, entonces puedes diseñar intervenciones”, dice Peter Dedon, un profesor de Ingeniería Biológica del MIT. “Por ejemplo, ¿qué tal si desarrollamos maneras de bloquear o interrumpir los efectos tóxicos de la inflamación crónica?”.

Dedon es uno de los autores principales del artículo, junto con Steven Tannenbaum, un profesor de ingeniería biológica y química; James Fox, un profesor de ingeniería biológica y director del Departamento de Medicina Comparativa; y Gerald Wogan, un profesor de ingeniería biológica y química. El autor principal es Aswin Mangerich, un antiguo posdoctorado del MIT ahora en la Universidad de Konstanz en Alemania.

Demasiado de una cosa buena

Durante los últimos 30 años, Tannenbaum ha liderado un grupo de investigadores del MIT dedicados a estudiar el vínculo entre inflamación crónica y cáncer. La inflamación es una de las reacciones naturales del cuerpo a cualquier tipo de infección o daño, pero cuando se prolonga por mucho tiempo, los tejidos pueden ser dañados.

Cuando el sistema inmune del cuerpo detecta patógenos o daño celular, activa un torrente de células llamadas macrófagos y neutrófilos. El trabajo de estas células es devorar bacterias, células muertas y escombros: proteínas, ácidos nucleicos y otras moléculas liberadas por células muertas o dañadas. Como parte de este proceso, las células producen químicos altamente reactivos que ayudan a degradar a las bacterias.

“Al hacer esto, devorar las bacterias y soltar estos químicos reactivos sobre ellas, los químicos también pueden difundirse en el tejido, y ahí es donde se presenta el problema”, dice Dedon.

Si esto se lleva a cabo durante un largo período de tiempo, esa inflamación puede eventualmente llevar al cáncer. Un estudio reciente publicado en el diario The Lancet encontró que las infecciones cuentan por alrededor de 16 por ciento de nuevos casos de cáncer en el mundo.

Daño extendido

En el nuevo estudio del MIT, los investigadores analizaron ratones que habían sido infectados con H. hepaicus, que causa que desarrollen una condición similar a la enfermedad inflamatoria intestinal en los humanos. Durante el transcurso de 20 semanas, los ratones desarrollaron infecciones crónicas del hígado y el colon, con algunos de los ratones desarrollando cáncer de colon.

A lo largo del período de 20 semanas, los investigadores midieron alrededor de una docena de tipos diferentes de daño al ADN, ARN y las proteínas. También examinaron el daño al tejido y midieron que genes fueron encendidos y apagados según la infección progresó. Uno de sus encuentros claves fue que el hígado y el colon respondieron diferente a la infección.

En el colon, pero no en el hígado, el neutrófilo secretó ácido hipocloroso (también encontrado en los limpiadores caseros), que daña significativamente las proteínas, el ADN y el ARN añadiendo un átomo de cloro a ellos. El ácido hipocloroso tiene la intención de matar a las bacterias, pero también puede filtrarse en el tejido circundante y daña las células epiteliales del colon.

Los investigadores encontraron niveles de uno de los productos del daño por cloro en el ADN y ARN, clorotirosina, bien correlacionada con la severidad de la inflamación, lo que podría permitirles predecir el riesgo de inflamación crónica en pacientes con infecciones del colon, hígado o estómago. Tannenbaum recientemente identificó otro producto del daño por cloro en proteínas: clorotirosina, la que se correlaciona con inflamación. Mientras que estos resultados apuntan a un papel importante de los neutrófilos en la inflamación y el cáncer, “aún no sabemos si podemos predecir el riesgo de cáncer de estas moléculas dañadas”, dice Dedon.

Otra diferencia que encontraron los investigadores entre el colon y el hígado fue que los sistemas de reparación de ADN se volvieron más activos en el hígado pero menos activos en el colon, aún cuando ambos estaban experimentando daño de ADN. “Es posible que tengamos un doble efecto [en el colon]. Tienes estas bacterias que suprimen la reparación de ADN, al mismo tiempo que tienes todo este daño al ADN ocurriendo en el tejido como resultado de la respuesta inmune a las bacterias”, dice Dedon.

Los investigadores también identificaron varios tipos de daño al ADN previamente desconocidos en ratones y humanos, uno de los que involucran la oxidación de la guanina, un bloque de construcción de ADN, en dos nuevos productos, spiroiminodihidatoina (spiroiminodihydantoin) y guanidinohidanotoina (guanidinohydanotoin).

James Swenberg, un profesor de ciencias ambientales e ingeniería en la Universidad de la Escuela de Salud Pública de Carolina del Norte, dice que estudios “profundos e inovativos” deberían ayudar a los investigadores a entender mejor muchos tipos de cáncer. “No puedo recordar haber visto un artículo que trajo tantos aspectos de investigación a la mesa en un reporte”, dijo Swenberd, quien no estuvo involucrado en el estudio.

En futuros estudios, el equipo del MIT planea investigar los mecanismos del desarrollo del cáncer con más detalle, incluyendo ver por qué las células experimentan una disminución en algunos tipos de daño al ADN pero no en otros.

La investigación fue patrocinada por el Instituto Nacional del Cáncer de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Modificaciones en el ADN ocurren conforme envejecemos

ADN

Estudios recientes sugieren que nuestro ADN sufre cambios químicos sumamente sutiles conforme pasan los años, lo cual se contrapone a declaraciones anteriores que afirmaban que, desde un punto de vista genético, nosotros no cambiamos sino sólo nuestro cuerpo.

Ahora, mediante la comparación del ADN de un bebé recién nacido con el de una persona centenaria se ha demostrado que el alcance de estos cambios pueden ser dramáticos, y dichos cambios podrían ayudar a explicar por qué el riesgo de padecer cáncer y otras enfermedades incrementa a medida que envejecemos.

El ADN está formado de cuatro componentes básicos (adenina, timina, guanina y citosina), y la secuencia de estos nucleótidos en un gen determina qué proteína forma. Los genes pueden ser activados y desactivados según se necesite, y la regulación de los genes frecuentemente implica algo que se denomina mecanismos epigenéticos, en los cuales se realizan alteraciones químicas en el ADN. Uno de los cambios epigenéticos más comunes involucra a un grupo metilo (un átomo de carbono y tres átomos de hidrógeno) unido a un nucleótido, usualmente citosina. En general esta unión, llamada metilación, desactiva el gen en cuestión.

Las recientes investigaciones sugieren que los cambios en los patrones de metilación del ADN conforme una persona envejece pueden contribuir a las enfermedades humanas cuyo riesgo incrementa con la edad, incluyendo el cáncer. Un equipo dirigido por el investigador de epigenética Manel Esteller, en el Instituto de Investigación Biomédica de Bellvitge (IDIBELL) en Barcelona, España, optó por analizar los dos extremos, un bebé varón recien nacido y un hombre de 103 años de edad, para así tener una idea más clara de cómo los patrones de metilación cambian con el paso del tiempo.

El estudio consistió en extraer ADN de células blancas tomadas de la sangre del hombre anciano y de la obtenida del cordón umbilical del bebé para determinar sus patrones de metilación mediante una técnica bastante nueva llamada secuenciación por bisulfito del genoma completo (WGBS). Se encontró que en el recién nacido la cantidad de metilación de la citosina (80.5%) era significativamente mayor que en el anciano (73%), y en un caso intermedio en que el equipo analizó el ADN de un hombre de 26 años de edad, el nivel de metilación resultó ser también intermedio (78%).

El equipo se enfocó en comparar regiones del genoma donde las secuencias de nucleótidos del ADN eran idénticas, por lo cual sólo las diferencias epigenéticas destacarían. Así, se identificaron cerca de 18,000 de las llamadas regiones de metilación diferencial (DMRs) del genoma. Más de un tercio de las DMR ocurrieron en genes que ya han sido relacionados con el riesgo de cáncer.

Además se analizaron los patrones de metilación de otros 19 recién nacidos y 19 personas de entre 89 y 100 años de edad, con lo cual se confirmaron los resultados de que las personas mayores tienen menores niveles de metilacion de citosina que los recién nacidos.

Esteller dice que en el hombre centenario, la pérdida de grupos de metilo (que vuelven a activar los genes) ocurre en genes que incrementan el riesgo de infección y diabetes cuando son activados en la edad adulta. En contraste, el pequeño número de genes en el centenario que tuvo mayores niveles de metilación fueron a menudo aquellos que necesitaban mantenerse activados para proteger contra el cáncer.

Según Martin Widschwendter, un oncólogo en el University College de Londres en el Reino Unido, este nuevo trabajo es el primero en comparar los patrones de metilación del ADN de todo lo ancho del genoma.

Fuente
http://news.sciencemag.org/ (en inglés)

Investigadores logran interferencia ARN en un paquete más ligero

Una nanopartícula de ácido nucleico posee menos riesgo de efectos secundarios y ofrece mejor precisión al apuntarla.

Anne Trafton, MIT News Office. Original (en inglés).

Image: Hyukjin Lee and Ung Hee Lee
Investigadores crearon está nano partícula con ADN y ARN para apagar genes en células cancerosas. Image: Hyukjin Lee and Ung Hee Lee

Usando una técnica conocida como “origami de ácido nucleico”, ingenieros químicos han construido pequeñas partículas hechas de ADN y ARN que pueden entregar trozos de ARN directamente a los tumores, apagando genes expresados en células de cáncer.

Para alcanzar este tipo de apagado de genes, conocido como interferencia ARN, mucho investigadores han tratado – con algo de éxito – de entregar ARN con partículas hechas de polímeros o lípidos. Sin embargo, esos materiales pueden poseer riesgos de seguridad y son difíciles de apuntar, dice Daniel Anderson, un profesor asociado de ciencias de la salud y tecnología e ingeniería química, y un miembro del Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts).

Las nuevas partículas, desarrolladas por investigadores en el MIT, Alnylam Pharmaceuticals y la Escuela de Medicina de Harvard, parecen vencer aquellos desafíos, dice Anderson. Debido a que las partículas están hechas de ADN y ARN, son biodegradables y no poseen amenaza para el cuerpo. Pueden ser etiquetadas con moléculas de folato (la vitamina B9 o ácido fólico producida de manera natural por el cuerpo) para apuntar a la abundancia de receptores de folato encontrada en algunos tumores, incluyendo aquellos asociados con el cáncer de ovarios – uno de los cánceres más mortales y difíciles de tratar.

Anderson es autor principal de un artículo sobre las partículas que apareció en la edición del 3 de junio en Nature Nanotechnology. El autor líder del artículo es el antiguo posdoctorado del MIT Hyukjin Lee, ahora un profesor asistente en la Universidad de Mujeres Ewha en Seul, Corea del Sur.

Perturbación de genes

La interferencia ARN (RNAi por sus siglas en inglés), un fenómeno natural que las células usan para controlar su expresión genética, ha intrigado a los investigadores desde su descubrimiento en 1998. La información genética es normalmente cargada desde el ADN en el núcleo a ribosomas, estructuras celulares donde las proteínas son creadas. ARN interferente corto (siRNA por sus siglas en inglés de short interfering RNA), perturba este proceso al pegarse a las moléculas mensajeras ARN que cargan las instrucciones del ADN, destruyéndolas antes de que alcancen el ribosoma.

Nanopartículas que entregan siRNA hechas de lípidos, las que el laboratorio de Anderson y Alnylam también están desarrollando, han mostrado algo de éxito en apagar los genes del cáncer en estudios animales, y pruebas clínicas están ahora siendo llevadas a cabo en pacientes con cáncer de hígado. Las nanopartículas tienden a acumularse en el hígado, el bazo y los pulmones, así que el cáncer de hígado es un objetivo natural – pero ha sido difícil apuntar dichas partículas a tumores en otros órganos.

“Cuando piensas de cáncer metástatico, no quieres detenerte en el hígado”, dice Anderson. “También quieres llegar a más sitios diversos”.

Otro obstáculo para llenar la promesa del RNAi ha sido encontrar maneras de entregar las hebras cortas de ARN sin lastimar los tejidos saludables del cuerpo. Para evitar esos posibles efectos secundarios, Anderson y sus colegas decidieron entregar el ARN en un simple paquete hecho de ADN. Usando origami de ácido nucleico – que permite a los investigadores construir formas tridimensionales de segmentos cortos de ADN – fusionaron seis hebras de ADN para crear un tetraedro (una pirámide de seis bordes y cuatro caras). Una sola hebra de ARN fue entonces fijada a cada borde del tetraedro.

“Lo que es particularmente emocionante sobre el origami de ácido nucleico es el hecho de que puedes hacer partículas idénticas molecularmente y definir la localización de cada átomo”, dice Anderson.

Para apuntar las partículas a las células de tumor, los investigadores pegaron tres moléculas de folato a cada tetraedro. Los fragmentos de proteína cortos también podrían ser usados para apuntar las partículas a una variedad de tumores.

Usando origami de ácido nucleico, los investigadores tienen mucho más control sobre la composición de las partículas, volviendo más fácil crear partículas idénticas que todas busquen el mismo objetivo. Esto no es usualmente el caso con las nanopartículas de lípidos, dice Vinod Labhasetwar, un profesor de ingeniería biomédica en el Instituto de Investigación Lerner en la Clínica Cleveland. “Con partículas de lípidos, no estás seguro de qué fracción de las partículas realmente están llegando a los tejidos objetivo”, dice Labhasetwar, quien no estuvo involucrado en este estudio.

Circular y acumularse

En estudios de ratones implantados con tumores humanos, los investigadores encontraron que una vez inyectadas, las nanopartículas de ácido nucleico circularon en el torrente sanguíneo con una vida media de 24 minutos – el suficiente tiempo para alcanzar sus objetivos. El tetraedron de ADN parece proteger el ARN de la rápida absorción por los riñones y su excreción, lo que usualmente ocurre cuando el ARN es administrado por sí mismo, dice Anderson.

“Si tomas un ARN interferente corto y lo inyectas en el torrente sanguíneo, típicamente está fuera en seis minutos. Si haces una nanopartícula más grande usando métodos de origami, incrementa su habilidad para evitar la excreción a través de los riñones, incrementando por lo tanto su tiempo circulando por el corriente sanguíneo”, dice.

Los investigadores también mostraron que las nanopartículas de ácido nucleico se acumularon en los sitios del tumor. El ARN entregado por las partículas fue diseñado para apuntar a un gen por luciferasa (una enzima utilizada en bioluminiscencia), el cual fue agregado a las células del tumor para hacerlas brillar. Encontraron que en ratones tratados, la actividad de la luciferasa cayó más de la mitad.

El equipo diseña ahora nanopartículas para apuntar a genes que promueven el crecimiento del tumor, y también trabaja en apagar genes involucrados en otras enfermedades genéticas.

La investigación fue patrocinada por el Instituto Nacional de Salud (National Institutes of Health) de los Estados Unidos, el Centro para la Excelencia de la Nanotecnología del Cáncer (Cancer Nanotechnology Excellence), Alnylam Pharmaceuticals y la Fundación Nacional de Investigación de Corea.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Dos golpes seguidos noquean agresivas células cancerosas

Células cáncer dos golpes
Imagen: Neil Ganem, Michael Yaffe y David Pellman

Un nuevo estudio del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts), muestra que la entrega en etapas de drogas para el cáncer es mucho más efectiva que administrándolas al mismo tiempo.

Anne Trafton, MIT News Office. Original (en inglés).

Los doctores han sabido por mucho tiempo que tratando pacientes con múltiples drogas contra el cáncer usualmente produce mejores resultados que el tratamiento con una sola droga. Ahora, un estudio del MIT muestra que el orden y el tiempo de la administración de las drogas puede tener un efecto dramático.

En el nuevo artículo, publicado en Cell el 11 de mayo, los investigadores mostraron que separar en etapas las dosis de dos drogas específicas aumentan dramáticamente su habilidad de matar un tipo de células de cáncer de mama particularmente maligno.

Los investigadores, liderados por Michael Yaffe, el profesor de Biología e Ingeniería Biológica en el MIT, están trabajando ahora con investigadores en el Instituto para el Cáncer Dana-Farber para planear pruebas clínicas de la terapia de drogas en etapas. Ambas drogas – erlotinib y doxorrubicina – ya están aprobadas para el tratamiento del cáncer.

Yaffe y el posdoctorado Michael Lee, autor líder del artículo de Cell, enfoca su estudio en un tipo de cáncer de mama conocido como triple negativo, lo que significa que no tienen un estrógeno sobrereactivo, progesterona o receptores HER2/neu (Human Epidermal Growth Factor Receptor 2 – Receptor de Factor de Crecimiento Epidérmico Humano 2). Los tumores triple-negativo, que cuentan por alrededor del 16 por ciento de casos de cáncer de mama, son mucho más agresivos que otros tipos y tienden a golpear mujeres jóvenes.

“Para las células de cáncer de mama triple-negativo, no hay buen tratamiento. El estándar de cuidado es una combinación de quimioterapia, y aunque tiene una tasa de respuesta inicial buena, un número significativo de pacientes desarrollan cáncer recurrente”, dice Yaffe, quien es miembro del Instituto David H. Koch para Investigación de Cáncer Integrativa en el MIT.

Crecimiento descontrolado

Durante los pasados ocho años, Yaffe ha estado estudiando los complejos caminos de señalización de células que controlan el comportamiento de las células: cómo crecen, cuándo se dividen, cuándo mueren. En las células cancerosas, estos caminos usualmente se descontrolan, provocando que las células crezcan aún en la ausencia de cualquier estímulo e ignoren señales de que deben de pasar por el suicidio celular.

Yaffe fue intrigado por la idea de que cambios inducidos por las drogas cambian los caminos de estas señales, si son administradas en etapas, podrían cambiar una células cancerosa en un estado menos maligno. “Nuestro trabajo previo en biología-sistemas nos había preparado a la idea de que podrías potencialmente llevar a una célula de un estado en el que solo una fracción de las células del tumor respondieran a la quimioterapia a un estado donde muchas más de ellas respondieran al re-conectar terapéuticamente sus redes de señales de una manera dependiente en el tiempo”, dijo.

Específicamente, él y Lee pensaron que podría ser posible sensitivizar células cancerosas a drogas que dañan el ADN – la columna vertebral de la mayoría de la quimioterapia – al darles primero otra droga que apague uno de los caminos que promueven el crecimiento incontrolable. Probaron diferentes combinaciones de 10 drogas que dañan el ADN y una docena de drogas que inhiben diferentes caminos cancerosos, usando diferentes programados de tiempo.

“Pensamos que volveríamos a probar una serie de drogas que todos ya habían probado, pero las pondríamos en partes – como retrasos en el tiempo – que, por razones biológicas, pensamos que eran importantes”, dijo Lee. “Pienso que si no hubiera funcionado, habríamos tenido muchos retrocesos, pero estábamos muy convencidos de que había mucha información que estaba quedando fuera por todos los demás”.

De todas las combinaciones que trataron, vieron que los mejores resultados con pretratamiento usando erlotinib seguido de doxorrubicina, un agente de quimioterapia común. Erlotinib, aprobado por la FDA (Food and Drug Administration – Administración de Alimentos y Medicamentos de los Estados Unidos) para tratar cáncer pancreático y algunos tipos de cáncer pulmonar, inhibe una proteína encontrada en las superficies celulares llamada receptor de factor de crecimiento epidérmico (EGF – epidermal growth factor). Cuando está constantemente activo, como lo está en muchas células cancerosas, el receptor EGF estimula una señalización que promueve crecimiento y división descontrolados.

Los investigadores encontraron que darle erlotinib entre cuatro y 48 horas antes de la doxorrubicina incrementa dramáticamente la muerte de células cancerosas. Dosis en etapas mataron hasta el 50 por ciento de células triple-negativas, mientras que la administración simultánea mató alrededor del 20 por ciento. Alrededor de 2,000 genes fueron afectados por el pretratamiento con erlotinib, encontraron los investigadores, resultando en el apagado de caminos involucrados en el crecimiento descontrolado.

“En lugar de ver cómo el tipo de tumor triple-negativo clásico, que es muy agresivo y de rápido crecimiento y metastásico, perdieron su cualidad tumorigénica y se convirtieron en un tipo diferente de tumor que no es muy agresivo, y muy fácil de matar”, dijo Lee.

Sin embargo, si las drogas fueran dadas en el orden reverso, la doxorrubicina se volvió menos efectiva que si hubiera sido dada sola.

Tratamiento con objetivo

Este tratamiento no solo funcionó en células cancerosas crecidas en un plato de laboratorio, sino también en ratones con tumores. Cuando fueron tratados con dos golpes seguidos de erlotinib y doxorrubicina, los tumores se encogieron y no volvieron a crecer por la duración del experimento (dos semanas). Con la quimioterapia sola, o cuando las dos drogas fueron dadas a la vez, los tumores se redujeron inicialmente pero volvieron a crecer.

Una combinación de mediciones de alto rendimiento y modelado por computadora fue usado para revelar el mecanismo de muerte de tumor incrementada, y para identificar un biomarcador para la respuesta de la droga. Los investigadores encontraron que el tratamiento era más efectivo en un subconjunto de células cancerosas triple-negativo con los más altos niveles de actividad del receptor EGF. Esto debería permitir a los doctores el revisar los tumores de pacientes para determinar cual sería más probable que respondiera a este tratamiento novedoso.

La investigación es “innovadora en su demostración de que los principios del orden y el tiempo son esenciales al desarrollo de terapias efectivas contra enfermedades complejas”, escribieron Rune Linding, líder del grupo investigador en la Universidad Técnica de Dinamarca, y Janine Erler, profesora asociada en la Universidad de Copenhagen, en un comentario acompañando el artículo en Cell. “Como investigadores de enfermedades, debemos considerar los estados de las redes, este y otro estudios sirven como un modelo para una nueva generación de biólogos del cáncer”.

El concepto de tratamientos de drogas en etapas para maximizar el impacto podría ser ampliamente aplicable, dice Yaffe. Los investigadores encontraron incrementos similares en reducción de tumores al pre-tratar células de mama cancerosas positivas en HER2 con un inhibidor de HER2, seguido por una droga que daña al ADN. También vieron buenos resultados con erlotinib y doxorrubicina en algunos tipos de cáncer pulmonar.

“Las drogas serán diferentes para cada caso de cáncer, pero el concepto de que inhibición en etapas temporales será un fuerte determinante de la eficacia ha sido verdadero universalmente. Es solo una cuestión de encontrar las combinaciones correctas”, dice Lee.

Los hallazgos también remarcan la importancia de biología de sistemas en el estudio del cáncer, dice Yaffe. “Nuestros hallazgos ilustran cómo los acercamientos ingeniados por sistemas para la señalización de células puede tener un gran potencial de impacto en el tratamiento de enfermedades”, dice.

La investigación fue patrocinada por el Programa de Biología del Cáncer Integrativo de los Institutos Nacionales de Salud y el Departamento de Defensa.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Encontrando como funcionan los antibióticos

Antibióticos
Imagen: Christine Daniloff / iMol

Un equipo descubre el mecanismo que produce daño fatal al ADN en bacterias.

Anne Trafton, MIT News Office. Original (en inglés).

La penicilina y otros antibióticos han revolucionado la medicina, convirtiendo enfermedades que alguna vez fueron mortales en males fácilmente tratables. Sin embargo, mientras que los antibióticos han estado en uso por más de 70 años, el mecanismo exacto por medio del cual matan a las bacterias ha sido un misterio.

Ahora un nuevo estudio por investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y la Universidad de Boston revelan el mecanismo de muerte detrás de las tres grandes clases de antibióticos: Las drogas producen moléculas destructivas que dañan fatalmente el ADN bacterial a través de una larga cadena de eventos celulares.

Entendiendo los detalles de este mecanismo podría ayudar a los científicos a mejorar drogas existentes, de acuerdo a los investigadores. Pocos antibióticos nuevos han sido desarrollados en los últimos 40 años, y muchas cepas de bacteria se han vuelto resistentes a las drogas ahora disponibles.

“Uno podría mejorar la eficacia de muerte de nuestro arsenal actual, reducir las dosis requeridas o volver a sensibilizar cepas a los antibióticos existentes”, dice James Collins, un profesor de Ingeniería Biomédica en la Universidad de Boston, quien colaboró con Graham Walker, profesor de Biología del MIT, en un estudio que apareció en la edición del 20 de abril de la revista Science.

El autor líder del artículo es James Foti, un posdoctorado en el laboratorio de Walker. Otros autores son el posdoctorado del MIT Babho Devadoss y Jonathan Winkler, un doctor recientemente graduado en el laboratorio de Collins.

Radicales destructivos

En el 2007, Collins mostró que tres clases de antibióticos – quinolonas, betalactámicos y aminoglucósidos – matan células produciendo moléculas altamente destructivas conocidas como radicales hidroxilos. En el momento, él y otros sospechaban que los radicales lanzaban un ataque general contra cualquier componente de la célula que encontraban.

“Reaccionan con casi todo”, dice Walker. “Irán tras los lípidos, pueden oxidar proteínas, pueden oxidar el ADN”. Sin embargo, la mayoría de este daño no es fatal, encontraron los investigadores en el nuevo estudio.

Lo que es mortal a las bacterias es el daño inducido por hidroxilo a la guanina, una de las cuatro bases nucleótidas que constituyen el ADN. Cuando este daño es insertado en el ADN, las células tratan de reparar el año pero terminan acelerando su propia muerte. Este proceso “no causa todas las muertes, pero causa una cantidad notable de ellas”, dice Walker, quien es profesor de la Sociedad Americana del Cáncer.

Los estudios de Walker de las enzimas reparadoras del ADN llevaron a los investigadores a sospechar que esta guanina dañada, conocida como guanina oxidada, podría jugar un papel en la muerte celular por medio de antibióticos. En la primer fase de su investigación, mostraron que una enzima especializada en el copiado de ADN llamada DinB – parte del sistema de una célula para lidiar con el daño al ADN – es muy buena utilizando el bloque de construcción de guanina oxidada para sintetizar ADN.

Sin embargo, DinB no solo inserta guanina oxidada opuesta a su compañera base correcta, citosina, en la hebra complementaria cuando se está copiando el ADN, sino que también la inserta con su compañera incorrecta, adenina. Los investigadores encontraron que, cuando se han incorporado demasiadas guaninas oxidadas en nuevas hebras de ADN, los esfuerzos inútiles de la célula para remover estas lesiones resultaron en la muerte.

Basado en estos estudios de reparación muy básica de ADN, Walker y sus colegas crearon la hipótesis de que los radicales hidroxilos producidos por los antibióticos podrían ser el inicio mismo de la cascada de daño al ADN. Esto resultó ser el caso.

Una vez que la guanina oxidada causada por el tratamiento con antibióticos es insertada en el ADN, un sistema celular diseñado para reparar el ADN es activado. Enzimas especializadas conocidas como MutY y MutM hacen cortes en el ADN para iniciar su proceso de reparación que normalmente ayuda a las células a lidiar con la presencia de guanina oxidada en su ADN. Sin embargo, esta reparación es arriesgada porque requiere abrir la doble hélice del ADN, cortando una de sus cadenas mientras que la base incorrecta es reemplazada. Si dos de estas reparaciones se llevan a cabo en estrecha proximidad a las hebras opuestas de ADN, el ADN sufre un rompimiento de doble hélice, lo que usualmente es fatal a la célula.

“Este sistema, que normalmente debe estar protegiéndote y manteniéndote muy preciso, se vuelve tu verdugo”, dice Walker.

Deborah Hung, una profesora de Microbiología e Inmunobiología en la Escuela Médica de Harvard, dice que el nuevo estudio representa “el próximo capítulo importante mientras que atravesamos un renacimiento de entendimiento sobre cómo funcionan los antibióticos. Solíamos pensar que sabíamos, y ahora nos damos cuenta de que todas nuestras suposiciones simples estaban equivocadas, y es mucho más complejo”, dice Hung, quien no fue parte de este estudio.

Nuevos objetivos

En algunos casos de daño al ADN inducido por antibióticos, la célula bacterial es capaz de salvarse a sí misma al reparar el rompimiento de doble hebra usando un proceso llamado recombinación homóloga. Desactivar las enzimas requeridas para la recombinación homóloga podría incrementar la sensibilidad de las bacterias a los antibióticos, dicen los investigadores.

“Nuestro trabajo sugiere que las proteínas involucradas en reparar las dobles-hebras rotas de ADN podrían ser objetivos interesantes detrás de los cuales ir como medio para afectar la eficacia de muertes de las drogas”, dice Collins.

Los investigadores, cuyo trabajo fue patrocinado por los Institutos Nacionales de Salud y el Instituto Médico Howard Hughes, también mostraron un mecanismo adicional que podría estar involucrado en las muertes de células causadas por uno de los tipos de antibióticos, aminoglucósidos: En células tratadas con estos antibióticos, la guanina oxidada es incorporada en el mensajero ARN, resultando en proteínas incorrectas que, a su vez, disparan más produción de radicales hidroxilos y así más guanina oxidada. Los investigadores trabajan ahora para avanzar aún más en su comprensión de cómo los antibióticos matan células.

Reimpreso con permiso de MIT News.

http://web.mit.edu/ (en inglés)

Nanofábricas producen proteínas

Nanofábricas proteinas
Imagen: Avi Schroeder

Pequeñas partículas podrían manufacturar drogas contra el cáncer en el lugar donde está el tumor.

Anne Trafton, MIT News Office. Original (en inglés)

Drogas hechas de proteínas han mostrado promesas en tratar el cáncer, pero son difíciles de entregar porque el cuerpo usualmente rompe las proteínas antes de que alcance su destino.

Para sobreponerse a ese obstáculo, un equipo de investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) ha desarrollado un nuevo tipo de nanopartícula que puede sintetizar proteínas en demanda. Una vez que estas fábricas de proteínas alcanzan sus objetivos, los investigadores pueden convertir la síntesis de proteínas alumbrándolas con luz ultravioleta en ellas.

Las partículas podrían ser usadas para liberar pequeñas proteínas que matan las células cancerosas, y eventualmente proteínas más grandes como anticuerpos que disparan el sistema inmune para destruir los tumores, dice Avi Shroeder, un posdoctorado en el Instituto Para Investigación de Cáncer Integrativa David H. Koch del MIT y autor líder de una revista académica que aparece en el diario NanoLetters.

Esta es la primera prueba de concepto que puede sintetizar nuevos componentes de materiales inertes dentro del cuerpo”, dice Schroeder, quien trabaja en los laboratorios de Robert Langer, Profesor del Instituto David H. Koch del MIT, y Daniel Anderson, un profesor asociado de ciencias de la salud y tecnología e ingeniería química.

Langer y Anderson también son autores de la revista académica, junto con los antiguos posdoctorados del Instituto Koch Michael Goldber, Christian Kastrup y Christopher Levins.

Imitando a la naturaleza

A los investigadores se les ocurrió la idea de partículas constructoras de proteínas cuando trataban de pensar en nuevas maneras de atacar tumores metastásicos – aquellos que se esparcen del sitio original del cáncer a otras partes del cuerpo. Dichas metástasis causan el 90% de las muertes por cáncer.

Decidieron imitar la estrategia de manufactura de proteínas encontradas en la naturaleza. Células que guardan sus instrucciones para construir proteínas en ADN, el cual es entonces copiado en ARN mensajeros (ARNm o mRNA por sus siglas en inglés). Ese ARNm carga los planos de proteínas a estructuras celulares llamadas ribosomas, las que leen el ARNm y lo traducen en secuencias de aminoácidos. Los aminoácidos son encadenados juntos para formar proteínas.

“Queríamos usar maquinaria que ya había probado ser muy efectiva. Los ribosomas son usados en la naturaleza, y fueron perfeccionados por la naturaleza durante miles de millones de años para ser la mejor máquina que puede producir proteínas”, dice Schroeder.

Los investigadores diseñaron las nuevas nanopartículas para auto-ensamblarse de una mezcla que incluye lípidos – que forman los caparazones exteriores de las partículas – además de una mezcla de ribosomas, aminoácidos y las enzimas necesarias para la síntesis de proteínas. También incluyeron en la mezcla las secuencias de ADN para las proteínas deseadas.

El ADN es atrapado por un compuesto químico llamado DMNPE, que se enlaza a él. Este compuesto libera el ADN cuando es expuesto a luz ultravioleta.

“Quieres ser capaz de dispararlo para que el sistema solo se encienda cuando quieres que trabaje”, dice Schroeder. “Cuando las partículas son golpeadas por luz, el ADN es liberado de un compuesto que lo enjaula y entonces puede entrar al ciclo de producir las proteínas”.

Fábricas programables

En este estudio, las partículas fueron programadas para producir ya sea proteína fluorescente verde (GFP – green fluorescent protein) o luciferasa, ambas son fáciles de detectar. Pruebas en ratones mostraron que las partículas fueron exitosamente puestas a producir la proteína cuando luz ultravioleta las alumbró.

Esperar hasta que las partículas alcancen su destino antes de activarlas podría ayudarles a prevenir efectos secundarios de una droga particularmente tóxica, dice James Heath, un profesor de química en el Instituto de Tecnología de California. Sin embargo, más pruebas deben realizarse para demostrar que las partículas alcanzarían su destino intencionado en humanos, y que solo puedan ser utilizadas para producir proteínas terapéuticas, dice.

“Hay muchos detalles en los que aún debe trabajarse para que éste sea un acercamiento terapéutico viable, pero es un concepto realmente estupendo e innovador, y ciertamente hace funcionar la imaginación de uno”, dice Heath, quien no fue parte del equipo investigador.

Los investigadores ahora trabajan en partículas que puedan sintetizar drogas potenciales contra el cáncer. Algunas de estas proteínas son tóxicas para células cancerosas y saludables – pero usando este sistema de entrega, la producción de proteínas podría ser encendida solo en el tumor, evitando los efectos secundarios en células saludables.

El equipo también trabaja en nuevas maneras de activar las nanopartículas. Posibles acercamientos incluyen la producción disparada por el nivel de acidez u otras condiciones biológicas específicas a ciertas regiones del cuerpo o células.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

El ejercicio altera el ADN

Ejercicio
GLOWIMAGE/CORBIS

Un viaje al gimnasio podría significar no solo la pérdida de algunos kilos – sino también modificaciones químicas al ADN en la forma de grupos metilos. La presencia o la falta de grupos metilos en ciertas posiciones del ADN puede afectar la expresión de genes.

Investigadores en el Instituto Carolina de Estocolmo, Suecia, observaron el estado de la metilación de los genes en pequeñas biopsias tomadas de músculos del muslo en jóvenes adultos saludables, antes y después de una sesión en una bicicleta de ejercicio. Encontraron que, para algunos genes involucrados en el metabolismo de la energía, el ejercicio desmetilaba las regiones promotoras (tramos de ADN que facilitan la transcripción de genes particulares), y mientras más intenso era el ejercicio, mayor era la desmetilación. Los genes no relacionados con el metabolismo seguían metilados.

El hallazgo llega como una sorpresa para muchos investigadores, ya que se creía que una vez que la célula se vuelve adulta, la metilación de ADN se estabilizaba. El estudio muestra que el ejercicio agudo cambia el estado de la metilación en células musculares. Además, una desmetilación similar podía verse cuando a cultivos de células musculares les fueron dadas dosis de cafeína masivas (probablemente letales).

Más información
http://www.nature.com/ (en inglés)