Nuevo fármaco candidato muestra promesa contra el cáncer

Cancer pánico
Imagen: Custom Medical Stock Photo/Getty

Un compuesto de platino podría ofrecer una alternativa al cisplatino, un agente de quimioterapia ampliamente usado.

Anne Trafton, MIT News Office. Original (en inglés).

Las drogas que contienen platino están entre los fármacos contra el cáncer más poderosos y ampliamente usados. Sin embargo, dichas drogas tienen efectos secundarios tóxicos, y las células de cáncer pueden eventualmente volverse resistentes a ellas.

El profesor de química del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) Stephen J. Lippard, quien ha pasado la mayoría de su carrera estudiando los fármacos con platino, ha identificado ahora un compuesto que mata las células cancerosas mejor que la cisplatina, la droga contra el cáncer más comúnmente utilizada. El nuevo compuesto podría ser capaz de evadir la resistencia de las células de cáncer a los compuestos tradicionales de platino.

“He creído por un largo tiempo que hay algo especial sobre el platino y su habilidad para tratar el cáncer,” dice Lippard. Usando nuevas variantes, “podríamos tener una oportunidad de aplicar platino a un rango más amplio de tipos de cáncer, con más éxito,” dice.

Ying Song, Stephen J. Lippard y Ga Young Park
De izquierda a derecha: Ying Song, Stephen J. Lippard y Ga Young Park. Imagen: M. Scott Brauer

Lippard es el autor principal de un artículo describiendo el nuevo fármaco candidato, conocido como fenantriplatino (phenanthriplatin), en el Proceedings of the National Academy of Sciences (PNAS). El autor líder es el posdoctorado Ga Young Park; otros autores son la estudiante graduada Justin Wilson y la posdoctorado Ying Song.

El cisplatino, aprobado por vez primera para tratar el cáncer en 1978, es particularmente efectivo contra el cáncer de testículo, y también es usado para tratar tumores de ovarios y algunos de pulmón, así como linfoma y otros cánceres. Al centro hay un átomo de platino ligado a dos moléculas de amoniaco y dos iones de cloruro. Cuando el compuesto entra en una célula cancerosa, se carga positivamente debido a que las moléculas de agua reemplazan sus iones de cloruro. El ion positivo resultante puede atacar el ADN cargado negativamente, formando vínculos con las hebras de ADN volviendo difícil, si no imposible, que la célula lea esa sección de ADN. Mucho de este daño, si no es reparado, mata la célula.

Cisplatino
Cisplatino

Por muchos años, Lippard ha estudiado el mecanismo de la acción del cisplatino y ha estado tras de drogas similares que podrían ser más poderosas, trabajar contra más tipos de cáncer, tener menos efectos secundarios y evadir la resistencia de las células cancerosas.

Una manera de hacer eso es variar la estructura del compuesto de platino, alterando su actividad. En este caso, los investigadores estudiaron compuestos que son similares al cisplatino, pero solo tienen un átomo de cloruro reemplazable. Dicho compuesto puede pegarse al ADN en solo un sitio en lugar de dos.

De investigación temprana sobre los compuestos de platino realizado en los años 70, los investigadores pensaron que los compuestos de platino necesitaban dos puntos de unión en el ADN para tener un efecto en las células cancerosas. Sin embargo, en los años 80, se descubrió que ciertos compuestos de platino cargados positivamente que solo pueden ligarse al ADN en un sitio tienen actividad contra el cáncer, re-encendiendo interés en ellos.

En el 2008, el grupo de Lippard investigó un compuesto llamado piriplatino (pyriplatin), en el cual uno de los átomos de cloruro es reemplazado por un anillo de piridina de seis miembros que incluye cinco átomos de carbono y un átomo de nitrógeno. Este compuesto tiene algo de actividad contra el cáncer, pero no era tan poderoso como el cisplatino o el oxaliplatino, otro fármaco contra el cáncer basado en platino aprobado por la FDA (Food and Drug Administration – Administración de Comida y Drogas) de los Estados Unidos.

Piriplatina
Piriplatino. Imagen: PNAS

Lippard se propuso entonces crear compuestos similares con anillos más grande, lo que el teorizó que podría ser más efectivo bloqueando la transcripción de ADN. Uno de esos fue el fenantriplatino, el compuesto descrito en el nuevo artículo de PNAS.

El fenantriplatino fue probado contra 60 tipos de células cancerosas como parte el programa de revisión de fármacos contra el cáncer del Instituto Nacional del Cáncer de los Estados Unidos, y se encontró que era de cuatro a 40 veces más poderoso que el cisplatino, dependiendo del tipo de cáncer. También mostró un patrón diferente de actividad que el del cisplatino, sugiriendo que podría ser usado para tratar tipos de cáncer contra los que el cisplatino es inefectivo.

Una razón para la eficacia del fenantriplatino es que puede enrar en las células de cáncer más fácil que el cisplatino, dice Lippard. Estudios previos han mostrado que los compuestos de platino que contienen carbono pueden pasar a través de canales específicos, encontrados en abundancia en células cancerosas, que permiten entrar compuestos orgánicos cargados positivamente. Otra razón es la habilidad del fenantriplatino de inhibir la transcripción, el proceso mediante el cual las células convierten ADN a ARN en el primer paso de la expresión genética.

Otra ventaja del fenantriplatino es que parece ser capaz de evadir algunas defensas contra los cisplatino de las células cancerosas. Los compuestos que contienen azufre encontrados en las células, como la glutationa (glutathione), pueden atacar el platino y destruirlo antes de que alcance a ligarse al ADN. Sin embargo, el fenantriplatino contiene un anexo de tres anillos voluminosos que parece prevenir que el azufre desactive los compuestos de platino tan efectivamente.

Luigi Marzilli, un profesor de quimioterapia en la Universidad del Estado de Louisiana, dice que el nuevo compuesto parece ser muy prometedor. “Expande la utilidad de los fármacos de platino y evita algunos de los problemas que las drogas existentes tienen,” dice Marzilli, quien no fue parte del equipo investigador.

Los investigadores se encuentran conduciendo ahora pruebas animales para determinar como la droga es distribuida a través del cuerpo, y que tan bien mata los tumores. Dependiendo de los resultados, podrían modificar el compuesto para mejorar esas propiedades, dice Lippard.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Dos golpes seguidos noquean agresivas células cancerosas

Células cáncer dos golpes
Imagen: Neil Ganem, Michael Yaffe y David Pellman

Un nuevo estudio del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts), muestra que la entrega en etapas de drogas para el cáncer es mucho más efectiva que administrándolas al mismo tiempo.

Anne Trafton, MIT News Office. Original (en inglés).

Los doctores han sabido por mucho tiempo que tratando pacientes con múltiples drogas contra el cáncer usualmente produce mejores resultados que el tratamiento con una sola droga. Ahora, un estudio del MIT muestra que el orden y el tiempo de la administración de las drogas puede tener un efecto dramático.

En el nuevo artículo, publicado en Cell el 11 de mayo, los investigadores mostraron que separar en etapas las dosis de dos drogas específicas aumentan dramáticamente su habilidad de matar un tipo de células de cáncer de mama particularmente maligno.

Los investigadores, liderados por Michael Yaffe, el profesor de Biología e Ingeniería Biológica en el MIT, están trabajando ahora con investigadores en el Instituto para el Cáncer Dana-Farber para planear pruebas clínicas de la terapia de drogas en etapas. Ambas drogas – erlotinib y doxorrubicina – ya están aprobadas para el tratamiento del cáncer.

Yaffe y el posdoctorado Michael Lee, autor líder del artículo de Cell, enfoca su estudio en un tipo de cáncer de mama conocido como triple negativo, lo que significa que no tienen un estrógeno sobrereactivo, progesterona o receptores HER2/neu (Human Epidermal Growth Factor Receptor 2 – Receptor de Factor de Crecimiento Epidérmico Humano 2). Los tumores triple-negativo, que cuentan por alrededor del 16 por ciento de casos de cáncer de mama, son mucho más agresivos que otros tipos y tienden a golpear mujeres jóvenes.

“Para las células de cáncer de mama triple-negativo, no hay buen tratamiento. El estándar de cuidado es una combinación de quimioterapia, y aunque tiene una tasa de respuesta inicial buena, un número significativo de pacientes desarrollan cáncer recurrente”, dice Yaffe, quien es miembro del Instituto David H. Koch para Investigación de Cáncer Integrativa en el MIT.

Crecimiento descontrolado

Durante los pasados ocho años, Yaffe ha estado estudiando los complejos caminos de señalización de células que controlan el comportamiento de las células: cómo crecen, cuándo se dividen, cuándo mueren. En las células cancerosas, estos caminos usualmente se descontrolan, provocando que las células crezcan aún en la ausencia de cualquier estímulo e ignoren señales de que deben de pasar por el suicidio celular.

Yaffe fue intrigado por la idea de que cambios inducidos por las drogas cambian los caminos de estas señales, si son administradas en etapas, podrían cambiar una células cancerosa en un estado menos maligno. “Nuestro trabajo previo en biología-sistemas nos había preparado a la idea de que podrías potencialmente llevar a una célula de un estado en el que solo una fracción de las células del tumor respondieran a la quimioterapia a un estado donde muchas más de ellas respondieran al re-conectar terapéuticamente sus redes de señales de una manera dependiente en el tiempo”, dijo.

Específicamente, él y Lee pensaron que podría ser posible sensitivizar células cancerosas a drogas que dañan el ADN – la columna vertebral de la mayoría de la quimioterapia – al darles primero otra droga que apague uno de los caminos que promueven el crecimiento incontrolable. Probaron diferentes combinaciones de 10 drogas que dañan el ADN y una docena de drogas que inhiben diferentes caminos cancerosos, usando diferentes programados de tiempo.

“Pensamos que volveríamos a probar una serie de drogas que todos ya habían probado, pero las pondríamos en partes – como retrasos en el tiempo – que, por razones biológicas, pensamos que eran importantes”, dijo Lee. “Pienso que si no hubiera funcionado, habríamos tenido muchos retrocesos, pero estábamos muy convencidos de que había mucha información que estaba quedando fuera por todos los demás”.

De todas las combinaciones que trataron, vieron que los mejores resultados con pretratamiento usando erlotinib seguido de doxorrubicina, un agente de quimioterapia común. Erlotinib, aprobado por la FDA (Food and Drug Administration – Administración de Alimentos y Medicamentos de los Estados Unidos) para tratar cáncer pancreático y algunos tipos de cáncer pulmonar, inhibe una proteína encontrada en las superficies celulares llamada receptor de factor de crecimiento epidérmico (EGF – epidermal growth factor). Cuando está constantemente activo, como lo está en muchas células cancerosas, el receptor EGF estimula una señalización que promueve crecimiento y división descontrolados.

Los investigadores encontraron que darle erlotinib entre cuatro y 48 horas antes de la doxorrubicina incrementa dramáticamente la muerte de células cancerosas. Dosis en etapas mataron hasta el 50 por ciento de células triple-negativas, mientras que la administración simultánea mató alrededor del 20 por ciento. Alrededor de 2,000 genes fueron afectados por el pretratamiento con erlotinib, encontraron los investigadores, resultando en el apagado de caminos involucrados en el crecimiento descontrolado.

“En lugar de ver cómo el tipo de tumor triple-negativo clásico, que es muy agresivo y de rápido crecimiento y metastásico, perdieron su cualidad tumorigénica y se convirtieron en un tipo diferente de tumor que no es muy agresivo, y muy fácil de matar”, dijo Lee.

Sin embargo, si las drogas fueran dadas en el orden reverso, la doxorrubicina se volvió menos efectiva que si hubiera sido dada sola.

Tratamiento con objetivo

Este tratamiento no solo funcionó en células cancerosas crecidas en un plato de laboratorio, sino también en ratones con tumores. Cuando fueron tratados con dos golpes seguidos de erlotinib y doxorrubicina, los tumores se encogieron y no volvieron a crecer por la duración del experimento (dos semanas). Con la quimioterapia sola, o cuando las dos drogas fueron dadas a la vez, los tumores se redujeron inicialmente pero volvieron a crecer.

Una combinación de mediciones de alto rendimiento y modelado por computadora fue usado para revelar el mecanismo de muerte de tumor incrementada, y para identificar un biomarcador para la respuesta de la droga. Los investigadores encontraron que el tratamiento era más efectivo en un subconjunto de células cancerosas triple-negativo con los más altos niveles de actividad del receptor EGF. Esto debería permitir a los doctores el revisar los tumores de pacientes para determinar cual sería más probable que respondiera a este tratamiento novedoso.

La investigación es “innovadora en su demostración de que los principios del orden y el tiempo son esenciales al desarrollo de terapias efectivas contra enfermedades complejas”, escribieron Rune Linding, líder del grupo investigador en la Universidad Técnica de Dinamarca, y Janine Erler, profesora asociada en la Universidad de Copenhagen, en un comentario acompañando el artículo en Cell. “Como investigadores de enfermedades, debemos considerar los estados de las redes, este y otro estudios sirven como un modelo para una nueva generación de biólogos del cáncer”.

El concepto de tratamientos de drogas en etapas para maximizar el impacto podría ser ampliamente aplicable, dice Yaffe. Los investigadores encontraron incrementos similares en reducción de tumores al pre-tratar células de mama cancerosas positivas en HER2 con un inhibidor de HER2, seguido por una droga que daña al ADN. También vieron buenos resultados con erlotinib y doxorrubicina en algunos tipos de cáncer pulmonar.

“Las drogas serán diferentes para cada caso de cáncer, pero el concepto de que inhibición en etapas temporales será un fuerte determinante de la eficacia ha sido verdadero universalmente. Es solo una cuestión de encontrar las combinaciones correctas”, dice Lee.

Los hallazgos también remarcan la importancia de biología de sistemas en el estudio del cáncer, dice Yaffe. “Nuestros hallazgos ilustran cómo los acercamientos ingeniados por sistemas para la señalización de células puede tener un gran potencial de impacto en el tratamiento de enfermedades”, dice.

La investigación fue patrocinada por el Programa de Biología del Cáncer Integrativo de los Institutos Nacionales de Salud y el Departamento de Defensa.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nanopartículas dirigidas muestran éxito en pruebas clínicas

Nanopartículas dirigidas
Imagen: Digizyme.Inc

Pequeñas partículas diseñadas para quedarse en células cancerosas logran reducir tumores con dosis más bajas que la quimioterapia tradicional.

Anne Trafton, MIT News Office. Original (en inglés).

Nanopartículas terapéuticas dirigidas que se acumulan en tumores mientras que pasan de lado células saludables han mostrado resultados prometedores en una prueba clínica que se está llevando a cabo, de acuerdo a una nueva revista académica.

Las nanopartículas tienen una molécula mensajera que les permite atacar específicamente células cancerosas, y son las primeras de dichas partículas dirigidas en entrar a estudios clínicos humanos. Originalmente desarrolladas por investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y el Hospital Brigham and Women en Boston, las partículas están diseñadas para cargar la droga de quimioterapia docetaxel, usada para tratar cánceres de pulmón, próstata y mama, entre otros.

En el estudio, que aparece en la edición del 4 de abril del diario Science Translational Medicine, los investigadores demuestran la habilidad de las partículas para dirigirse a un receptor encontrado en células cancerosas y acumularse en los sitios de tumores. Las partículas también se mostraron seguras y efectivas: muchos de los tumores de pacientes se encogieron como resultado del tratamiento, aún cuando recibieron dosis más bajas que las usualmente administradas.

“Los resultados clínicos iniciales de regresión de tumores incluso con dosis bajas de la droga validan nuestros descubrimientos pre-clínicos de que nanopartículas dirigidas se acumulan preferencialmente en tumores”, dice Robert Langer, profesor del Departamento de Ingeniería Química del Instituto David H. Koch en el MIT y un autor principal de la revista académica. “Intentos previos de desarrollar nanopartículas dirigidas no se han trasladado exitosamente a estudios clínicos humanos por la dificultad inherente de diseñar y escalar una partícula capaz de dirigirse a tumores, evadiendo el sistema inmune y liberando drogas en una forma controlada”.

La prueba clínica fase 1 fue realizada por investigadores en BIND Biosciences, una compañía cofundada por Langer y Omid Farokhzad en el 2007.

“Este estudio demuestra por primera vez que es posible generar medicinas con propiedades dirigidas y programables que pueden concentrar los efectos terapéuticos directamente en el sitio de la enfermedad, potencialmente revolucionando cómo enfermedades complejas como el cáncer son tratadas”, dice Farokhzad, director del Laboratorio de Nanomedicina y Biomateriales en el hospital Brigham and Women, profesor asociado de anestesia en la Escuela de Medicina de Harvard y un autor principal de la revista académica.

Investigadores en el Instituto del Cáncer Dana-Farber, el Colegio Médico Weill Cornell, Servicios de Investigación Clínica TGen en Phoenix y el Institudo del Cáncer Karmanos en Detroit también estuvieron involucrados en el estudio.

Partículas dirigidas

El laboratorio de Langer comenzó a trabajar en nanopartículas poliméricas a inicios de los 90, desarrollando partículas hechas de materiales biodegradables. A principios de esta década, Langer y Farokhzad comenzaron a colaborar para desarrollar métodos para dirigir activamente las partículas a moléculas encontradas en células cancerosas. Para el 2006, ya habían demostrado que las nanopartículas dirigidas pueden encoger tumores en ratones, pavimentando el camino para el desarrollo eventual y la evaluación de una nanopartícula dirigida llamada BIND-014, que entró en pruebas clínicas en enero del 2011.

Para este estudio, los investigadores recubrieron las nanopartículas con moléculas direccionadoras que reconocen una proteína llamada PSMA (prostate-specific membrane antigen – antígeno membranal específico de la próstata), encontrado abundantemente en la superficie de la mayoría de las células de tumores de la próstata así como muchos otros tipos de tumores.

Uno de los desafíos desarrollando nanoparticulas de entrega de drogas efectivas, dice Langer, las está diseñando para que puedan realizar dos funciones críticas: evadir la respuesta inmunitaria normal del cuerpo y alcanzar sus objetivos deseados.

“Necesitas exactamente la combinación correcta de estas propiedades, por que si no tienen la concentración correcta de moléculas dirigidoras, no alcanzarás las células que quieres, y si no tienen las propiedades sigilosas correctas, serán tomadas por los macrófagos”, dice Langer, también un miembro del Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT.

Las nanopartículas BIND-014 tienen tres componentes: uno que carga la droga, uno que apunte al PSMA, y uno que ayude a evadir macrófagos y las demás células inmunológicas. Hace unos pocos años, Langer y Farokhzad desarrollaron una forma de manipular estas propiedades de forma muy precisa, creando grandes colecciones de partículas diversas que podrían ser probadas para la composición ideal.

“Ellos sistemáticamente hicieron un grupo de materiales que variaban en las propiedades que ellos pensaron que importarían, y desarrollaron una manera de monitorearlos. Eso no ha sido hecho en este tipo de entorno antes”, dice Mark Saltzman, un profesor de ingeniería bioquímica en la Universidad de Yale quien no estuvo involucrado en este estudio. “Han tomado el concepto del laboratorio a las pruebas clínicas, lo que es muy impresionante”.

Todas las partículas están hechas de polímeros ya aprobados para uso médico por la Administración de Alimentos y Drogas (FDA – Food and Drug Administration) de los Estados Unidos.

Resultados clínicos

La prueba clínica fase 1 involucró a 17 pacientes con tumores avanzados o metastáticos que ya habían pasado por la quimioterapia tradicional. En pruebas fase 1, investigadores evalúan la seguridad de una droga potencial y estudian sus efectos en el cuerpo. Para determinar las dosis seguras, a los pacientes les fueron dadas dosis escaladas de nanopartículas. Hasta ahora, dosis de BIND-014 han alcanzado la cantidad de docetaxel usualmente dadas sin nanopartículas, sin nuevos efectos secundarios. Los efectos secundarios conocidos del docetaxel también han sido más suaves.

En las 48 horas después del tratamiento, los investigadores encontraron que la concentración de docetaxel en la sangre de los pacientes era 100 veces más alta con las nanopartículas comparadas al docetaxel administrado en su forma convencional. La más alta concentración en la sangre de BIND-014 facilitó el direccionamiento a los tumores resultando en una reducción de los tumores en pacientes, en algunos casos con dosis de BIND-014 que correspondía a un 20 por ciento de la cantidad de docetaxel normalmente dada. Las nanopartículas también fueron efectivas en cánceres en los que el docetaxel usualmente tiene poca actividad, incluyendo el cáncer cervical y el cáncer de los ductos de la bilis.

Los investigadores también encontraron que en animales tratados con la nanopartícula, la concentración de docetaxel en los tumores era hasta diez veces más altas que en animales tratados con inyecciones de docetaxel convencional las primeras 24 horas, y que el tratamiento con nanopartículas resultó en una reducción de tumores mejorada.

La prueba clínica fase 1 sigue llevándose a cabo; BIND Biosciences ahora planea las pruebas fase 2, que investigarán aún más la efectividad del tratamiento en un mayor número de pacientes.

El desarrollo inicial de las partículas en el MIT y en el Hospital Brigham and Women fue patrocinado con fondos del Instituto Nacional del Cáncer, el Instituto Nacional de Obtención de Imágenes Biomédicas y Bioingeniería, el Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT, la Fundación del Cáncer de Próstata, un regalo de David H. Koch y el Centro del Cáncer de Próstata Dana-Farber de Harvard (SPORE). Desarrollo subsecuente por BIND Biosciences fue patrocinado con fondos del Instituto Nacional del Cáncer, el Instituto Nacional de Estándares y Tecnología, y BIND Biosciences. Todos los institutos son de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Usando nanopartículas para mejorar la quimioterapia

Nanopartículas quimio

La quimioterapia es realmente un veneno para las células, se toma ventaja de el hecho de que los tumores tienen un metabolismo acelerado y de esta manera absorben el veneno más rápido que el resto del cuerpo y mueren antes de que nos mate a nosotros mismos. Aunque los doctores apuntan hacia los tumores cuando prescriben el uso de la quimioterapia, los compuestos golpean una gran variedad de lugares en el cuerpo, llevando a efectos secundarios como daño a la médula espinal y pérdida de cabello.

Para mejorar su precisión, investigadores han tratado de “empacar” estas drogas dentro de pequeños contenedores huecos que pueden ser dirigidos hacia los tumores dejando de lado los tejidos saludables. Pero el tamaño, forma y acomodo de estas “nanopartículas” puede afectar drásticamente donde y cuando son tomados. Ahora, los científicos han estudiando alrededor de 100 diferentes formas de nanopartículas y mostrado que cuando una droga de quimioterapia convencional es empacada dentro de la mejor de estas nanopartículas, es considerablemente más efectiva peleando contra el cáncer de próstata en animales comparado con la droga sola.

Imagen: J. Hrkach et al., Science Translational Medicine.

Más información
http://news.sciencemag.org/ (en inglés)

Nanopartículas podrían mejorar la terapia contra el cáncer

Cáncer
© Michiko Fukuda lab.

Investigadores prueban grupos de carbón a una nanoescala para la quimioterapia. La mezcla de drogas actuales y nanopartículas de carbón muestran potencial para mejorar el tratamiento para los cánceres de cabeza y cuello, especialmente cuando son combinados con terapia de radiación, de acuerdo al nuevo estudio presentado por la Universidad de Rice y el Centro de Cáncer MD Anderson de la Universidad de Texas.

El trabajo abre un camino para mayor investigación en terapia personalizada a las necesidades de pacientes individuales. La terapia usa nanopartículas de carbón para encapsular las drogas quimioterapeúticas y mantenerlas encerradas hasta que sean entregadas a las células cancerosas que deben de matar.

Más información
El estudio completo (de pago, en inglés)
http://www.media.rice.edu/ (en inglés)

Tumores cancerígenos fosforecentes: Avance en su extracción quirúrgica

Tumores que brillan
Tumores cancerígenos fosforescentes

Investigadores de Cambridge, están por iniciar las primeras pruebas quirúrgicas, haciendo brillar los tipos de cáncer en el cerebro.

Gracias al fármaco 5-ALA, que es un amino-ácido, se podrán acumular productos químicos fluorescentes en el tumor y permitirán asegurar la eliminación de los tumores cerebrales en los bordes de las operaciones, unas de las más complicadas y que necesitan de mayor precisión.

Este amino-ácido permitirá “convertir” la zona afectada por el tumor en una zona rosada bajo la luz ultravioleta, por lo tanto esto facilitará a los neurocirujanos, la extracción de los bordes a la hora de extirpar el cáncer completo y asegurar que se haya eliminado.

La primera fase de estas cirugías, será con 60 pacientes con glioblastoma, que es un tipo de cáncer maligno que se mantiene en las células del cerebro y que su tasa promedio de supervivencia es de 15 meses después de su diagnóstico.

Los investigadores comentaron:

El tratamiento de tumores cerebrales, es un verdadero desafío que enfrenta a los médicos. Necesitamos con urgencia nuevos tratamientos. Con estas pruebas, podríamos paliar uno de los grandes problemas de la quimioterapia, de la que no sabemos realmente la medida en que una droga penetra en el tumor, debido a la barrera sangre-cerebro.

Una vez realizada la operación de los “tumores brillantes” y se hayan eliminado bajo la luz ultravioleta, se concluirá añadiendo en la zona operada, una fina lámina empapada con fármacos que liberará lentamente los medicamentos de quimioterapia, durante un período de 4 a 6 semanas. Este método final tratará de matar cualquier célula cancerígena restante.

De obtener resultados exitosos con esta técnica, la medicina avanzaría en uno de los grandes retos actuales con la quimioterapia para los tumores cerebrales, ya que aún en la actualidad no se sabe con exactitud la medida en que llegan los fármacos en el tumor.

Fuente:
http://alt1040.com/