Investigadores logran interferencia ARN en un paquete más ligero

Una nanopartícula de ácido nucleico posee menos riesgo de efectos secundarios y ofrece mejor precisión al apuntarla.

Anne Trafton, MIT News Office. Original (en inglés).

Image: Hyukjin Lee and Ung Hee Lee
Investigadores crearon está nano partícula con ADN y ARN para apagar genes en células cancerosas. Image: Hyukjin Lee and Ung Hee Lee

Usando una técnica conocida como “origami de ácido nucleico”, ingenieros químicos han construido pequeñas partículas hechas de ADN y ARN que pueden entregar trozos de ARN directamente a los tumores, apagando genes expresados en células de cáncer.

Para alcanzar este tipo de apagado de genes, conocido como interferencia ARN, mucho investigadores han tratado – con algo de éxito – de entregar ARN con partículas hechas de polímeros o lípidos. Sin embargo, esos materiales pueden poseer riesgos de seguridad y son difíciles de apuntar, dice Daniel Anderson, un profesor asociado de ciencias de la salud y tecnología e ingeniería química, y un miembro del Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts).

Las nuevas partículas, desarrolladas por investigadores en el MIT, Alnylam Pharmaceuticals y la Escuela de Medicina de Harvard, parecen vencer aquellos desafíos, dice Anderson. Debido a que las partículas están hechas de ADN y ARN, son biodegradables y no poseen amenaza para el cuerpo. Pueden ser etiquetadas con moléculas de folato (la vitamina B9 o ácido fólico producida de manera natural por el cuerpo) para apuntar a la abundancia de receptores de folato encontrada en algunos tumores, incluyendo aquellos asociados con el cáncer de ovarios – uno de los cánceres más mortales y difíciles de tratar.

Anderson es autor principal de un artículo sobre las partículas que apareció en la edición del 3 de junio en Nature Nanotechnology. El autor líder del artículo es el antiguo posdoctorado del MIT Hyukjin Lee, ahora un profesor asistente en la Universidad de Mujeres Ewha en Seul, Corea del Sur.

Perturbación de genes

La interferencia ARN (RNAi por sus siglas en inglés), un fenómeno natural que las células usan para controlar su expresión genética, ha intrigado a los investigadores desde su descubrimiento en 1998. La información genética es normalmente cargada desde el ADN en el núcleo a ribosomas, estructuras celulares donde las proteínas son creadas. ARN interferente corto (siRNA por sus siglas en inglés de short interfering RNA), perturba este proceso al pegarse a las moléculas mensajeras ARN que cargan las instrucciones del ADN, destruyéndolas antes de que alcancen el ribosoma.

Nanopartículas que entregan siRNA hechas de lípidos, las que el laboratorio de Anderson y Alnylam también están desarrollando, han mostrado algo de éxito en apagar los genes del cáncer en estudios animales, y pruebas clínicas están ahora siendo llevadas a cabo en pacientes con cáncer de hígado. Las nanopartículas tienden a acumularse en el hígado, el bazo y los pulmones, así que el cáncer de hígado es un objetivo natural – pero ha sido difícil apuntar dichas partículas a tumores en otros órganos.

“Cuando piensas de cáncer metástatico, no quieres detenerte en el hígado”, dice Anderson. “También quieres llegar a más sitios diversos”.

Otro obstáculo para llenar la promesa del RNAi ha sido encontrar maneras de entregar las hebras cortas de ARN sin lastimar los tejidos saludables del cuerpo. Para evitar esos posibles efectos secundarios, Anderson y sus colegas decidieron entregar el ARN en un simple paquete hecho de ADN. Usando origami de ácido nucleico – que permite a los investigadores construir formas tridimensionales de segmentos cortos de ADN – fusionaron seis hebras de ADN para crear un tetraedro (una pirámide de seis bordes y cuatro caras). Una sola hebra de ARN fue entonces fijada a cada borde del tetraedro.

“Lo que es particularmente emocionante sobre el origami de ácido nucleico es el hecho de que puedes hacer partículas idénticas molecularmente y definir la localización de cada átomo”, dice Anderson.

Para apuntar las partículas a las células de tumor, los investigadores pegaron tres moléculas de folato a cada tetraedro. Los fragmentos de proteína cortos también podrían ser usados para apuntar las partículas a una variedad de tumores.

Usando origami de ácido nucleico, los investigadores tienen mucho más control sobre la composición de las partículas, volviendo más fácil crear partículas idénticas que todas busquen el mismo objetivo. Esto no es usualmente el caso con las nanopartículas de lípidos, dice Vinod Labhasetwar, un profesor de ingeniería biomédica en el Instituto de Investigación Lerner en la Clínica Cleveland. “Con partículas de lípidos, no estás seguro de qué fracción de las partículas realmente están llegando a los tejidos objetivo”, dice Labhasetwar, quien no estuvo involucrado en este estudio.

Circular y acumularse

En estudios de ratones implantados con tumores humanos, los investigadores encontraron que una vez inyectadas, las nanopartículas de ácido nucleico circularon en el torrente sanguíneo con una vida media de 24 minutos – el suficiente tiempo para alcanzar sus objetivos. El tetraedron de ADN parece proteger el ARN de la rápida absorción por los riñones y su excreción, lo que usualmente ocurre cuando el ARN es administrado por sí mismo, dice Anderson.

“Si tomas un ARN interferente corto y lo inyectas en el torrente sanguíneo, típicamente está fuera en seis minutos. Si haces una nanopartícula más grande usando métodos de origami, incrementa su habilidad para evitar la excreción a través de los riñones, incrementando por lo tanto su tiempo circulando por el corriente sanguíneo”, dice.

Los investigadores también mostraron que las nanopartículas de ácido nucleico se acumularon en los sitios del tumor. El ARN entregado por las partículas fue diseñado para apuntar a un gen por luciferasa (una enzima utilizada en bioluminiscencia), el cual fue agregado a las células del tumor para hacerlas brillar. Encontraron que en ratones tratados, la actividad de la luciferasa cayó más de la mitad.

El equipo diseña ahora nanopartículas para apuntar a genes que promueven el crecimiento del tumor, y también trabaja en apagar genes involucrados en otras enfermedades genéticas.

La investigación fue patrocinada por el Instituto Nacional de Salud (National Institutes of Health) de los Estados Unidos, el Centro para la Excelencia de la Nanotecnología del Cáncer (Cancer Nanotechnology Excellence), Alnylam Pharmaceuticals y la Fundación Nacional de Investigación de Corea.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Entregando Ácido Ribonucleico con pequeñas esferas similares a esponjas

ARN pequeña esponja
Imagen: Hammond laboratory

Un nuevo método de interferencia de Ácido Ribonucleico (ARN, o RNA por sus siglas en inglés de RiboNucleic Acid) muestra promesa para tratar el cáncer, y otras enfermedades.

Anne Trafton, MIT News Office. Original (en inglés).

Durante la década pasada, científicos han estado siguiendo tratamientos de cáncer basados en interferencia de ARN – un fenómeto que ofrece una manera de apagar los genes con mal funcionamiento con pequeños trozos de ARN. Sin embargo, queda un enorme desafío: encontrar una manera de entregar eficientemente el ARN.

La mayoría del tiempo, ARN pequeño de interferencia (siRNA por sus siglas en inglés de small interfering RNA) – el tipo usado para interferencia ARN – es disuelto rápidamente dentro del cuerpo por enzimas que defienden contra infecciones por virus ARN.

“Ha sido una verdadera lucha el tratar de diseñar un sistema de entrega que nos permita administrar siRNA, especialmente si quieres apuntarle a partes específicas del cuerpo”, dijo Paula Hammond, Profesora de Ingeniería del David H. Koch en el MIT.

Hammond y sus colegas han llegado con un novedoso vehículo de entrega en el que el ARN es empacado dentro de microesferas tan densas que pueden resistir la degradación hasta alcanzar sus destinos. El nuevo sistema, descrito el 26 de febrero en el diario “Nature Materials”, derriba la expresión de genes específicos tan efectivamente como los métodos existentes de entrega, pero con una dosis mucho menor de partículas.

Dichas partículas podrían ofrecer una nueva manera de tratar no solo el cáncer, sino también cualquier otra enfermedad crónica causada por un “gen que no se comporta”, dijo Hammond, quien también es miembro del Instituto David H. Koch para Investigación de Cáncer Integrativa. “Interferencia de ARN tiene una enorme promesa para un gran número de enfermedades, una de las cuales es el cáncer, pero también enfermedades neurológicas y enfermedades inmunes”, dijo.

El autor líder de la revista académica es Jong Bum Lee, un antiguo postdoctorado en el laboratorio de Hammond. El postdoctorado Jinkee Hong, el doctor Daniel Bonner y el doctor Zhiyong Poon también son autores de la revista académica.

Interrupción genética

La interferencia de ARN es un proceso que ocurre naturalmente, descubierto en 1998, que permite a células ajustar precisamente su expresión genética. La información genética normalmente se carga del ADN en el núcleo a los ribosomas, estructuras celulares donde se forman las proteínas. siRNA se une al mensajero ARN que carga esta información genética, destruyendo instrucciones antes de que alcances al ribosoma.

Los científicos trabajan en muchas maneras para replicar artificialmente este proceso para apuntar a genes específicos, incluyendo empacar siRNA en nanopartículas hechas de lípidos (grasas) o materiales inorgánicos como el oro. Aunque muchas de éstas han mostrado algo de resultados, una desventaja es que es difícil cargar grandes cantidades de siRNA en estos cargueros, por que los cortos filamentos no se empacan ajustadamente.

Para superar esto, el equipo de Hammond decidió empacar el ARN como un largo filamento que se doblaría en una pequeña y compacta esfera. Los investigadores usaron un método para sintetizar ARN conocido como transcripción de círculo rotatorio para producir filamentos extremadamente largos de ARN hechos de una secuencia repetidora de 21 nucleoides. Esos segmentos están separados por una extensión más corta que es reconocida por la enzima Dicer, que corta el ARN cuando encuentra esa secuencia.

Conforme el filamento de ARN es sintetizado, se dobla en hojas que entonces se auto-ensamblan en una esfera muy densa similar a esponja. Hasta medio millón de copias de la misma secuencia de ARN pueden ser empacadas en una esfera con un diámetro de solo dos micrones. Una vez que la esferas se forman, los investigadores las empacan en una capa de polímero cargado positivamente, que induce a las esperas a empacarse aún más apretadas (hasta un diámetro de 200 nanómetros) y también las ayuda a entrar en las células.

Después de que las esferas entran a una célula, la enzima Dicer corta el ARN en lugares específicos, liberando las secuencias siRNA de 21 nucleótidos.

Peixuan Guo, director del Centro de Desarrollo de Nanomedicina NIH en la Universidad de Kentucky, dijo que el aspecto más emocionante del trabajo es el desarrollo de un método de auto-ensamblado para partículas de ARN. Guo, quien no fue parte del equipo de investigación, agrega que las partículas podrían ser más efectivas en entrar en las células si fueran encogidas a escalas aún más pequeñas, cercanas a los 50 nanómetros.

Apuntando a tumores

En la revista académica de “Nature Materials”, los investigadores probaron sus esferas programándolas para liberar secuencias de ARN que apagaran un gen que provoca que las células de tumores brillen en ratones. Encontraron que podían alcanzar el mismo nivel de derribo de sistemas de entrega de nanopartículas convencionales, pero utilizando hasta mil veces menos partículas.

Las microesponjas se acumulan en los sitios de tumores a través de un fenómeno comúnmente utilizado para entregar nanopartículas: Los vasos sanguíneos que rodean tumores tienen “filtraciones,” lo que significa que tienen pequeños poros a través de los cuales muy pequeñas partículas pueden colarse.

En estudios futuros, los investigadores planean diseñar microesferas recubiertas con polímeros que específicamente apunten a células de tumores u otras células de enfermedades. También trabajan en esferas que carguen ADN, para un potencial uso en terapia genética.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)