Un nuevo acercamiento a la desalinización de agua

Desalinización

Hojas de grafeno con poros controlados precisamente tienen potencial para purificar agua más eficientemente que los métodos existentes.

David L. Chandler, MIT News Office. Original (en inglés).

La disponibilidad del agua fresca esta disminuyendo en muchas partes del mundo, un problema que se espera que crezca con la población. Una fuente prometedora de agua potable es la cantidad virtualmente ilimitada de agua de mar en el mundo, pero hasta ahora la tecnología de desalinización ha sido muy cara para el uso extendido.

Ahora, investigadores del MIT han diseñado un nuevo acercamiento usando un tipo diferente de material de filtración: hojas de grafeno, una forma del elemento carbono de un átomo de grosor, el cual dicen que es mucho más eficiente y posiblemente menos caro que los sistemas existentes de desalinización.

Desalinización con grafeno
Desalinización con grafeno. Imagen: David Cohen-Tanugi

“No hay mucha gente trabajando en la desalinización desde un punto de vista de materiales,” dice Jeffrey Grossman, el profesor asociado de Ingeniería de Energía en el Departamento de Ciencia de Materiales e Ingeniería del MIT, quien es el autor principal de un artículo describiendo el nuevo proceso en el diario Nano Letters.

Grossman y el estudiante graduado David Cohen-Tanugi, quien es el autor líder del artículo, apuntaron a “controlar las propiedades del material hasta el nivel atómico,” produciendo una hoja de grafeno perforada con agujeros de un tamaño preciso. También añadieron otros elementos al material, causando que los bordes de esas minúsculas aperturas interactuen químicamente con las moléculas de agua – ya sea repeliéndolas o atrayéndolas.

“Estuvimos muy placenteramente sorprendidos por lo bien que el grafeno se desempeñó comparado a los sistemas existentes en las simulaciones por computadora,” dice Grossman.

Un método común de desalinización, llamado ósmosis inversa, usa membranas para filtrar la sal del agua. Pero estos sistemas requieren presión extremadamente alta – y por lo tanto, uso de energía – para forzar el agua a través de las delgadas membranas, las que son alrededor de mil veces más gruesas que el grafeno. El nuevo sistema de grafeno opera a una presión mucho más baja, y por lo tanto podría purificar el agua con un costo mucho más bajo, dicen los investigadores.

Mientras que la ósmosis reversa ha sido utilizada por décadas, “los mecanismos realmente básicos de separar la sal del agua no están bien entendidos, y son muy complejos,” dice Cohen-Tanugi, añadiendo que es muy difícil hacer experimentos a la escala de moléculas y iones individuales. Pero el nuevo sistema basado en grafeno, dice, trabaja “cientos de veces más rápido que las técnicas actuales, con la misma presión” – o, alternativamente, el sistema podría alcanzar las mismas tasas de los sistemas actuales, pero con presión más baja.

La clave para el nuevo proceso es el control preciso sobre el tamaño de los agujeros en la hoja de grafeno. “Hay un punto preciso, pero es muy pequeño,” dice Grossman – entre los poros lo suficientemente grandes para que pueda pasar la sal a través y lo suficientemente pequeños para que las moléculas de agua sean bloqueadas. El tamaño ideal es apenas por encima de un nanómetro, o una mil millonésima parte de un metro, dice. Si los agujeros son apenas ligeramente más pequeños – 0.7 nanómetros- el agua no circulará.

Otros grupos de investigación han trabajado para crear poros en el grafeno, dice Cohen-Tanugi, pero con tamaños diferentes y para diferentes propósitos – por ejemplo, haciendo agujeros mucho más grandes para filtrar moléculas como el ADN, o para separar diferentes tipos de gases. Los métodos usados para estos procesos no fueron lo suficientemente precisos para hacer los pequeños agujeros necesarios para la desalinización, dijo, pero técnicas más avanzadas – como el bombardeo de helio-ion para hacer agujeros precisos en el grafeno, grabados químicos y sistemas de auto-ensamblado – podrían ser adecuadas.

Por ahora, Grossman y Cohen-Tanugi han estado haciendo simulaciones de computadora de el proceso para determinar sus características óptimas. “Comenzaremos a trabajar en el prototipo este verano,” dice Grossman.

Debido a que el grafeno ha sido objeto de investigación en muchas aplicaciones diferentes, ha habido una gran cantidad de trabajo en encontrar maneras de hacerlo económico y en grandes cantidades. Y para la desalinización, debido a que el grafeno es un material tan fuerte – libra por libra, es el material más fuerte conocido – las membranas deberían de ser más durables que aquellas siendo actualmente usadas para la ósmosis inversa, dice Grossman.

Adicionalmente a esto, el material necesario para la desalinización no necesita ser tan puro como para usos electrónicos u ópticos, dice: “Unos pocos defectos no importan, mientras que no se abran” para que así la sal pueda pasar a través.

Joshua Schrier, un profesor asistente de química en el Colegio Haverford, dice, “Simulaciones previas han estudiado el flujo de agua a través de muy pequeños agujeros en el grafeno, y el diseño de poros que selectivamente permitan el paso de iones, pero – a pesar de la relevancia social y de ingeniería relevante a la desalinisación – nadie ha podido examinar las intersecciones de estos dos campos.” El trabajo por el equipo del MIT podría abrir un nuevo acercamiento a la desalinización, dice.

Schrier añade, “Manufacturar las estructuras porosas muy precisas que son encontradas en este artículo será difícil de hacer en gran escala con los métodos existentes.” Sin embargo, dice, “las predicciones son lo suficientemente exitantes que deberían de motivar a los ingenieros químicos a desarrollar análisis económicos más detallados de la desalinización del agua con estos tipos de materiales.”

El trabajo fue fundado por la Iniciativa de Energía del MIT y la Beca John S. Hennessy, y utilizó recursos computacionales del Centro Nacional de Computación Científica para la Investigación de Energia.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Microchips con rectángulos auto-ensamblables

Microchip
Imagen: Yan Liang

Una nueva técnica permite la producción de estructuras complejas de microchips en un paso de auto-ensamblaje.

David L. Chandler, MIT News Office. Original (en inglés).

Investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) han desarrollado un nuevo método para crear el complejo conjunto de cables y conexiones en microchips, utilizando un sistema de polímeros de auto-ensamblaje. El trabajo podría conducir eventualmente a una manera de hacer componentes más compactos en chips de memoria y otros dispositivos.

El nuevo método — desarrollado por el estudiante de doctorado visitante del MIT, Amir Tavakkoli, de la Universidad Nacional de Singapur, junto con otros dos estudiantes graduados y tres profesores en los departamentos de Ingeniería Eléctrica y Ciencias Computacionales (EECS) y de Ingeniería y Ciencia de los Materiales (DMSE) — es descrito en un artículo que será publicado este próximo mes de Agosto en la revista Advanced Materials; el artículo está disponible en línea ahora.

El proceso está estrechamente relacionado a un método que el mismo equipo describió el mes pasado en un artículo en Science, que hace posible la producción de configuraciones tridimensionales de cables y conexiones utilizando un sistema similar de polímeros autoensamblables.

En el nuevo artículo, los investigadores describen un sistema para producir matrices de cables que se encuentran en ángulos rectos, formando cuadrados y rectángulos. Si bien estas formas son la base para la mayoría de los diseños de circuitos de microchips, éstos son difíciles de producir a través del auto-ensamblado. Cuando las moléculas se auto-ensamblan, explica Caroline Ross, la profesora de Toyota de Ingeniería y Ciencia de los Materiales y co-autora de los artículos, tienen una tendencia natural a crear formas exagonales — como en un panal o en un conjunto de burbujas entre hojas de vidrio.

Por ejemplo, un conjunto de rodamientos pequeños en una caja “tiende a dar una simetría hexagonal, incluso aunque esté en una caja cuadrada”, Ross dice. “Pero eso no es lo que quieren los diseñadores de circuitos. Ellos quieren patrones con ángulos de 90 grados” — para superar la tendencia natural fue esencial producir un útil sistema de auto-ensamblaje, dice ella.

La solución del equipo crea una serie de pequeños postes en la superficie que guían los patrones de las moléculas de polímero de auto-ensamblaje. Esto resulta que tiene otras ventajas también: Además de producir patrones cuadrados y rectangulares perfectos de diminutos cables de polímeros, el sistema también permite la creación de una variedad de formas del material mismo, incluyendo cilindros, esferas, elipsoides y cilindros dobles. “Puedes generar este asombroso conjunto de características”, Ross dice, “con una plantilla muy simple”.

Karl Berggren, un profesor asociado de ingeniería eléctrica en el MIT y co-autor del artículo, explica que estas formas complejas son posibles porque “la plantilla, que está recubierta con el fin de repeler uno de los componentes poliméricos, causa una gran tensión local en el patrón. El polímero se tuerce y gira para tratar de evitar esta tensión, y al hacerlo se reorganiza en la superficie. Así podemos vencer las inclinaciones naturales de los polímeros, y hacer que creen patrones mucho más interesantes”.

Este sistema también puede producir características tales como conjuntos de agujeros en el material, cuyo espaciamiento está mucho más cerca de lo que se puede lograr utilizando métodos de fabricación de chips convencionales. Eso significa que puede producir características mucho más compactas en el chip de lo que los métodos actuales pueden crear — un paso importante en los esfuerzos en curso para empacar más y más componentes electrónicos en un determinado microchip.

“Esta nueva técnica puede producir múltiples [formas o patrones] simultáneamente”, dice Tavakkoli. Puede también hacer “patrones complejos, que es un objetivo para la fabricación de nanodispositivos”, con menos pasos que los procesos actuales. La fabricación de una amplia área de circuitos complejos en un chip utilizando la litografía por haz de electrones “podría tomar varios meses” dice. Por el contrario, utilizando el método de polímero auto-ensamblable tomaría sólo unos pocos días.

Eso está todavía demasiado lejos de la fabricación de un producto comercial, pero Ross explica grandes áreas en que este paso debe hacerse una sola vez para crear un patrón maestro, que luego pueda ser utilizado para estampar un revestimiento en otros chips en un proceso muy rápido de fabricación.

La técnica podría extenderse también más allá de la fabricación de microchips, dice Ross. Por ejemplo, un enfoque para la búsqueda de empacar cada vez mayores cantidades de datos en medios magnéticos como discos duros de computadoras, es utilizar un revestimiento magnético con un patrón muy fino estampado en él, definiendo con precisión las áreas donde cada bit de datos va a ser guardado. Un patrón tan fino podría potencialmente ser creado utilizando este método de auto-ensamblaje, ella dice, y luego estampado en los discos.

Craig Hawker, un profesor de química y bioquímica en la Universidad de California en Santa Barbara, que no estuvo involucrado en este trabajo, dice “Hay una necesidad y requisitos crecientes en la industria para encontrar una alternativa a la fotolitografía tradicional para la fabricación de dispositivos microelectrónicos de vanguardia. Este trabajo representa un logro fundamental en este campo y demuestra claramente que estructuras antes consideradas imposibles de alcanzar por una estrategia de auto-ensamblaje puede ahora ser preparada con un alto grado de fidelidad”.

Los colegas de Tavakkoli y Ross en este trabajo son los estudiantes de doctorado de DMSE, Adam Hannon y Kevin Gotrik, el profesor de DMSE, Alfredo Alexander-Kats y el profesor de EECS, Karl Berggren. La investigación, que incluye trabajo en el Laboratorio de Nanoestructuras y el centro de Litografía de Escaneo por Haz de Electrones del MIT, fue financiado por la Semiconductor Research Corporation, el Center on Functional Engineered Nano Architectonics, el Instituto Nacional de Recursos, la Alianza Singapore-MIT, la National Science Foundation, la Taiwan Semiconductor Manufacturing Company y Tokyo Electron.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Ojo biónico proporciona visión en escala de grises a personas invidentes

Bio-Retina
Imagen: Nano-retina.info

Después de muchas teorías, posturas, y ensayos no-humanos, parece que los implantes de ojo biónico finalmente llegan al mercado – primero en Europa, y esperemos que pronto al resto del mundo.

Estos implantes pueden devolver la vista a pacientes que padecen de una ceguera total, siempre y cuando ésta haya sido causada por una retina defectuosa, como en la degeneración macular (que millones de personas de la tercera edad padecen), retinopatía diabética y otras enfermedades oculares degenerativas.

Los costos de la Bio-Retina, desarrollada por Nano Retina, están alrededor de $60,000. El sensor de restauración de visión de 576 pixeles se coloca de hecho en el interior del ojo, en la parte superior de la retina, y el procedimiento puede realizarse con anestesia local en un lapso de solamente 30 minutos.

El sensor cuenta con 576 electrodos en su parte superior que se implantan a sí mismos en el nervio óptico, y un procesador de imágenes integrado convierte los datos de cada pixel en pulsos eléctricos que están codificados de manera que el cerebro pueda interpretar distintos niveles de la escala de grises.

Además, un par de lentes correctivos estándar modificados disparan un rayo láser cercano al infrarrojo a través del iris, dirigido al sensor ubicado detrás del ojo en el que opera una celda fotovoltáica que puede generar hasta 3 miliwatts, lo suficiente para que el sistema de Bio-Retina funcione.

Se tienen programados estudios en humanos a comienzos del próximo año, y aunque la aprobación de este implante podria demorar su aparición en el mercado de otros países, hay quienes tendrán la posibilidad de viajar a Europa si no desean esperar.

Referencia
http://www.extremetech.com/ (en inglés)

Investigadores logran interferencia ARN en un paquete más ligero

Una nanopartícula de ácido nucleico posee menos riesgo de efectos secundarios y ofrece mejor precisión al apuntarla.

Anne Trafton, MIT News Office. Original (en inglés).

Image: Hyukjin Lee and Ung Hee Lee
Investigadores crearon está nano partícula con ADN y ARN para apagar genes en células cancerosas. Image: Hyukjin Lee and Ung Hee Lee

Usando una técnica conocida como “origami de ácido nucleico”, ingenieros químicos han construido pequeñas partículas hechas de ADN y ARN que pueden entregar trozos de ARN directamente a los tumores, apagando genes expresados en células de cáncer.

Para alcanzar este tipo de apagado de genes, conocido como interferencia ARN, mucho investigadores han tratado – con algo de éxito – de entregar ARN con partículas hechas de polímeros o lípidos. Sin embargo, esos materiales pueden poseer riesgos de seguridad y son difíciles de apuntar, dice Daniel Anderson, un profesor asociado de ciencias de la salud y tecnología e ingeniería química, y un miembro del Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts).

Las nuevas partículas, desarrolladas por investigadores en el MIT, Alnylam Pharmaceuticals y la Escuela de Medicina de Harvard, parecen vencer aquellos desafíos, dice Anderson. Debido a que las partículas están hechas de ADN y ARN, son biodegradables y no poseen amenaza para el cuerpo. Pueden ser etiquetadas con moléculas de folato (la vitamina B9 o ácido fólico producida de manera natural por el cuerpo) para apuntar a la abundancia de receptores de folato encontrada en algunos tumores, incluyendo aquellos asociados con el cáncer de ovarios – uno de los cánceres más mortales y difíciles de tratar.

Anderson es autor principal de un artículo sobre las partículas que apareció en la edición del 3 de junio en Nature Nanotechnology. El autor líder del artículo es el antiguo posdoctorado del MIT Hyukjin Lee, ahora un profesor asistente en la Universidad de Mujeres Ewha en Seul, Corea del Sur.

Perturbación de genes

La interferencia ARN (RNAi por sus siglas en inglés), un fenómeno natural que las células usan para controlar su expresión genética, ha intrigado a los investigadores desde su descubrimiento en 1998. La información genética es normalmente cargada desde el ADN en el núcleo a ribosomas, estructuras celulares donde las proteínas son creadas. ARN interferente corto (siRNA por sus siglas en inglés de short interfering RNA), perturba este proceso al pegarse a las moléculas mensajeras ARN que cargan las instrucciones del ADN, destruyéndolas antes de que alcancen el ribosoma.

Nanopartículas que entregan siRNA hechas de lípidos, las que el laboratorio de Anderson y Alnylam también están desarrollando, han mostrado algo de éxito en apagar los genes del cáncer en estudios animales, y pruebas clínicas están ahora siendo llevadas a cabo en pacientes con cáncer de hígado. Las nanopartículas tienden a acumularse en el hígado, el bazo y los pulmones, así que el cáncer de hígado es un objetivo natural – pero ha sido difícil apuntar dichas partículas a tumores en otros órganos.

“Cuando piensas de cáncer metástatico, no quieres detenerte en el hígado”, dice Anderson. “También quieres llegar a más sitios diversos”.

Otro obstáculo para llenar la promesa del RNAi ha sido encontrar maneras de entregar las hebras cortas de ARN sin lastimar los tejidos saludables del cuerpo. Para evitar esos posibles efectos secundarios, Anderson y sus colegas decidieron entregar el ARN en un simple paquete hecho de ADN. Usando origami de ácido nucleico – que permite a los investigadores construir formas tridimensionales de segmentos cortos de ADN – fusionaron seis hebras de ADN para crear un tetraedro (una pirámide de seis bordes y cuatro caras). Una sola hebra de ARN fue entonces fijada a cada borde del tetraedro.

“Lo que es particularmente emocionante sobre el origami de ácido nucleico es el hecho de que puedes hacer partículas idénticas molecularmente y definir la localización de cada átomo”, dice Anderson.

Para apuntar las partículas a las células de tumor, los investigadores pegaron tres moléculas de folato a cada tetraedro. Los fragmentos de proteína cortos también podrían ser usados para apuntar las partículas a una variedad de tumores.

Usando origami de ácido nucleico, los investigadores tienen mucho más control sobre la composición de las partículas, volviendo más fácil crear partículas idénticas que todas busquen el mismo objetivo. Esto no es usualmente el caso con las nanopartículas de lípidos, dice Vinod Labhasetwar, un profesor de ingeniería biomédica en el Instituto de Investigación Lerner en la Clínica Cleveland. “Con partículas de lípidos, no estás seguro de qué fracción de las partículas realmente están llegando a los tejidos objetivo”, dice Labhasetwar, quien no estuvo involucrado en este estudio.

Circular y acumularse

En estudios de ratones implantados con tumores humanos, los investigadores encontraron que una vez inyectadas, las nanopartículas de ácido nucleico circularon en el torrente sanguíneo con una vida media de 24 minutos – el suficiente tiempo para alcanzar sus objetivos. El tetraedron de ADN parece proteger el ARN de la rápida absorción por los riñones y su excreción, lo que usualmente ocurre cuando el ARN es administrado por sí mismo, dice Anderson.

“Si tomas un ARN interferente corto y lo inyectas en el torrente sanguíneo, típicamente está fuera en seis minutos. Si haces una nanopartícula más grande usando métodos de origami, incrementa su habilidad para evitar la excreción a través de los riñones, incrementando por lo tanto su tiempo circulando por el corriente sanguíneo”, dice.

Los investigadores también mostraron que las nanopartículas de ácido nucleico se acumularon en los sitios del tumor. El ARN entregado por las partículas fue diseñado para apuntar a un gen por luciferasa (una enzima utilizada en bioluminiscencia), el cual fue agregado a las células del tumor para hacerlas brillar. Encontraron que en ratones tratados, la actividad de la luciferasa cayó más de la mitad.

El equipo diseña ahora nanopartículas para apuntar a genes que promueven el crecimiento del tumor, y también trabaja en apagar genes involucrados en otras enfermedades genéticas.

La investigación fue patrocinada por el Instituto Nacional de Salud (National Institutes of Health) de los Estados Unidos, el Centro para la Excelencia de la Nanotecnología del Cáncer (Cancer Nanotechnology Excellence), Alnylam Pharmaceuticals y la Fundación Nacional de Investigación de Corea.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Objetivo: Bacterias resistentes a las drogas

Bacteria resistente  a drogas
Imagen: Aleks Radovic-moreno

Ingenieros diseñan nanopartículas que entregan altas dosis de antibióticos directamente a las bacterias.

Anne Trafton, News Office. Original (en inglés).

Durante las últimas décadas, los científicos han enfrentado desafíos en el desarrollo de nuevos antibióticos conforme las bacterias se vuelven más resistentes a las drogas existentes. Una estrategia que podría combatir dicha resistencia sería abrumar las defensas bacteriales usando nanopartículas altamente dirigidas para entregar grandes dosis de antibióticos existentes.

En un paso hacia esa meta, investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y en el Hospital de Brigham and Women han desarrollado una nanopartícula diseñada para evadir al sistema inmune y hacer su casa en los sitios de infección, y entonces desatar un ataque de antibióticos enfocado.

Este acercamiento mitigaría los efectos secundarios de algunos antibióticos y protegería las bacterias benéficas que normalmente viven dentro de nuestros cuerpos, dice Aleks Radovic-Moreno, un estudiante graduado del MIT y autor líder de un artículo que describe las partículas en el diario ACS Nano.

El profesor del instituto Robert Langer del MIT y Omid Farokzhad, director del Laboratorio de Nanomedicina y Biomateriales en el Hospital Brigham and Women, son autores principales del artículo. Timothy Lu, un profesor asistente de ingeniería eléctrica y ciencia computacional, y los estudiantes del MIT Vlad Puscasu y Christopher Yoon también contribuyeron a la investigación.

Reglas de atracción

El equipo creó las nuevas nanopartículas de un polímero con una capa de polietilenglicol (PEG), que es usado comúnmente para la entrega de drogas porque no es tóxico y puede ayudar a las nanopartículas a viajar a través del torrente sanguíneo evadiendo detección por el sistema inmune.

Su siguiente paso fue inducir a las partículas a apuntar específicamente bacterias. Investigadores han tratado previamente de apuntar las partículas a las bacterias dándoles carga positiva, que las atrae a las paredes celulares cargadas negativamente de las bacterias. Sin embargo, el sistema inmune tiende a limpiar nanopartículas cargadas positivamente del cuerpo antes de que encuentren a las bacterias.

Para sobrepasar esto, los investigadores diseñaron nanopartículas carga-antibióticos que pueden cambiar su carga dependiendo de su entorno. Mientras que circulan en el torrente sanguíneo, las partículas tienen una ligera carga negativa. Sin embargo, cuando encuentran un sitio de infección, las partículas ganan una carga positiva, permitiéndoles pegarse a las bacterias y liberar su carga de droga.

Este cambio es provocado por el entorno ligeramente ácido que rodea a las bacterias. Los sitios de infección pueden ser ligeramente más acídos que el tejido normal del cuerpo si las bacterias que causan enfermedades se están reproduciendo rápidamente, agotando el oxígeno. La falta de oxígeno dispara un cambio en el metabolismo bacterial, llevándolas a producir ácidos orgánicos. Las células inmunes del cuerpo también contribuyen: Células llamadas neutrófilos producen ácidos conforme tratan de consumir a las bacterias.

Justo por debajo de la capa exterior de PEG, las nanopartículas contienen una capa sensible al pH hecha de largas cadenas del aminoácido histidina. Conforme el pH se reduce de 7 a 6 – representando un incremento en acidez – la molécula polihistidina tiende a ganar protones, dándole a la molécula una carga positiva.

Fuerza abrumadora

Una vez que las nanopartículas se pegan a bacterias, comienzan a liberar su carga de droga, que está incrustada en el núcleo de la partícula. En este estudio, los investigadores diseñaron las partículas para entregar vancomicina, usada para tratar infecciones resistentes a las drogas, pero las partículas podrían ser modificadas para entregar otros antibióticos o combinaciones de drogas.

Muchos antibióticos pierden su efectividad conforme la acidez aumenta, pero los investigadores encontraron que los antibióticos cargados por nanopartículas retuvieron su potencial mejor que los antibióticos tradicionales en un entorno ácido.

La versión actual de las nanopartículas liberan su carga de droga en uno o dos días. “No quieres nada más una pequeña ráfaga de droga, porque las bacterias pueden recuperarse una vez que la droga se ha ido. Quieres una liberación de droga extendida para que las bacterias sean golpeadas constantemente con altas cantidades de droga hasta que han sido erradicadas”, dice Radovic-Moreno.

Young Jik Kwon, un profesor asociado de ingeniería química y ciencia de materiales en la Universidad de California en Irvine, dice que las nuevas nanoportículas están bien diseñadas y podrían tener gran impacto potencial en tratar enfermedades infecciosas, particularmente en países en desarrollo. “La mayoría de la nanotecnología se ha enfocado en la entrega de drogas para cáncer u obtención de imágenes; no mucha gente ha mostrado interés en usar un acercamiento nanotecnológico para enfermedades infecciosas”, dice Kwon, quien no fue parte del equipo investigador.

Aunque se necesita más desarrollo, los investigadores esperan que las altas dosis liberadas por sus partículas podrían eventualmente ayudar a sobrepasar la resistencia bacterial. “Cuando las bacterias son resistentes a las drogas, no quiere decir que dejan de responder, significa que responden pero solo a más altas concentraciones. Y la razón por la que no puedes alcanzar esto clínicamente es porque los antibióticos a veces son tóxicos, o no se quedan en el sitio de la infección el suficiente tiempo”, dice Radovic-Moreno.

Un posible desafio: También hay células de tejido cargadas negativamente y proteínas en sitios de infección que pueden competir con las bacterias en pegarse a las nanopartículas y potencialmente bloquearlas de pegarse a las bacterias. Los investigadores están estudiando qué tanto podría esto limitar la efectividad de su nanopartícula de entrega. También están conduciendo estudios en animales para determinar si las partículas seguirán siendo sensibles al pH en el cuerpo y circularán por el tiempo suficiente para alcanzar sus objetivos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Comparando manzanas y naranjas

Fruta

Un nuevo sensor puede medir con precisión la madurez de las frutas, ayudando a prevenir las pérdidas del producto por descomposición.

Anne Trafton, MIT News Office. Original (en inglés).

Cada año, los supermercados de los Estados Unidos casi pierden el 10 por ciento de sus frutas y vegetales por la descomposición, de acuerdo al Departamento de Agricultura. Para ayudar a combatir esas pérdidas, el profesor de química del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) Timothy Swager y sus estudiantes han construido un nuevo sensor que podría ayudar a los tenderos y a los distribuidores de comida a monitorear mejor su producto.

Los nuevos sensores, descritos en el diario Angewandte Chemie, pueden detectar pequeñas cantidades de etileno, un gas que promueve la madurez en las plantas. Swager visualiza los sensores baratos pegados a las cajas de cartón de productos y escaneados con un dispositivo manual que revelaría la madurez de los contenidos. De esa manera, los tenderos sabrían cuando poner ciertos artículos a la venta para moverlos antes de que se vuelvan demasiado maduros.

“Si podemos crear un equipo que ayude a las tiendas de comestibles a manejar las cosas con mayor precisión, y tal vez reducir sus pérdidas en un 30 por ciento, eso sería enorme”, dice Swager, el profesor de química de John D. MacArthur.

Detectando gases para monitorear el suministro de comida es una nueva área de interés para Swager, cuya investigación previa se ha enfocado en sensores para detectar explosivos o agentes de guerra química y biológica.

“La comida es algo para lo que es realmente importante crear sensores, y vamos tras de la comida en el sentido amplio”, dice Swager. También está detrás de monitores que puedan detectar cuando la comida se vuelve mohosa o desarrolla crecimiento de bacterias, pero como su primer objetivo, eligió el etileno, una hormona de las plantas que controla la madurez.

Las plantas secretan cantidades variantes de etileno a través de su proceso de maduración. Por ejemplo, los plátanos seguirán verdes hasta que liberen el suficiente etileno para comenzar el proceso de maduración. Una vez que la maduración comienza, más etileno es producido, y la maduración se acelera. Si ese plátano amarillo perfecto no es comido en la cima de su madurez, el etileno lo volverá café y aguado.

Los distribuidores de fruta tratan de alentar este proceso manteniendo los niveles de etileno muy bajos en sus bodegas. Dichas bodegas emplean monitores que usan cromatografía de gas o espectroscopia de masa, que separa los gases y analiza su composición. Estos sistemas cuestan alrededor de $1,200 dólares cada uno.

“Justo ahora, es la única vez que la gente monitorea el etileno en estas enormes instalaciones, porque el equipo es muy caro”, dice Swager.

Detectando la madurez

Fundado por la Oficina de Investigación del ejército de los Estados Unidos a través del Instituto para Nanotecnologías del Soldado del MIT, el equipo del MIT construyó un sensor que consiste de un arreglo de decenas de miles de nanotubos de carbono: hojas de átomos de carbono enrolladas en cilindros que actúan como “supercarreteras” para el flujo eléctrico.

Para modificar los tubos para detectar gas etileno, los investigadores agregaron átomos de cobre, que sirven como “topes” (Nota del traductor: Con esto me refiero a los resaltes) para alentar los electrones fluyendo. “Cada vez que pones algo en estos nanotubos, estás haciendo topes, porque estás tomando este sistema perfecto y prístino y le estás poniendo algo”, dice Swager.

Los átomos de cobre ralentizan los electrones un poco, pero cuando el etileno está presente, se une a los átomos de cobre y alenta los electrones aún más. Midiendo qué tanto se alentan los electrones – una propiedad también conocida como resistencia – los investigadores pueden determinar qué tanto etileno está presente.

Para hacer el dispositivo aún más sensible, los investigadores añadieron pequeñas cuentas de poliestireno, que absorben etileno y lo concentran cerca de los nanotubos de carbono. Con su última versión, los investigadores pueden detectar concentraciones de etileno tan bajas como 0.5 partes por millón. La concentración requerida para la maduración de la fruta usualmente es entre 0.1 y una parte por millón.

Los investigadores probaron sus sensores en varios tipos de fruta – plátanos, aguacates (palta), manzanas, peras y naranjas – y fueron capaces de medir precisamente su madurez al detectar qué tanto etileno secretaban las frutas.

El autor líder del artículo describiendo los sensores es Birgit Esser, un posdoctorado en el laboratorio de Swager. El estudiante graduado Jan Schorr también es un autor del artículo.

John Saffell, el director técnico en Alphasense, una compañía que desarrolla sensores, describe el acercamiento del equipo del MIT como rigoroso y enfocado. “Este sensor, si es diseñado e implementado correctamente, podría reducir significativamente el nivel de descomposición de la fruta durante el envío”, dice.

“En cualquier momento dado, hay miles de contenedores de carga en los mares, transportando fruta y esperando que llegue a su destino con el grado correcto de madurez”, añade Saffell, quien no estuvo involucrado en esta investigación. “Sistemas analíticos caros pueden monitorear la generación de etileno, pero en el negocio tan dependiente de los costos que es el envío, no son económicamente viables para la mayoría de la fruta enviada”.

Swager ha aplicado por una patente de la tecnología y espera comenzar una compañía para comercializar los sensores. En trabajos futuros, planea agregar un chip de identificación por radio-frecuencia (RFID – radio-frequency identification) al sensor para poder comunicarse inalámbricamente con un dispositivo manual que mostraría los niveles de etileno. El sistema podría ser extremadamente barato – alrededor de 25 centavos por el sensor de nanotubo de carbono más otros 75 centavos por el chip RFID, estima Swager.

“Esto podría hacerse con electrónicos realmente baratos, con casi nada de energía”, dice.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Electricidad generada por virus

Virus recubierto
Virus recubierto. Imagen: Roy Kaltschmidt de Berkeley Lab

Científicos del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab) del Departamento de Energía de los Estados Unidos han desarrollado una manera de generar energía usando virus inofensivos que convierten energía mecánica en electricidad.

Los científicos probaron su acercamiento creando un generador que produce suficiente energía para operar una pequeña pantalla de cristal líquido. Funciona presionando con el dedo un electrodo del tamaño de una estampilla postal recubierto con virus diseñados específicamente. Los virus convierten la fuerza de la presión en una carga eléctrica.

Más información
http://newscenter.lbl.gov/ (en inglés)

A través de un vidrio, claramente

Vidrio antiempañado
Imagen: Hyungryul Choi and Kyoo-Chul Park

Investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) encuentran una manera de hacer vidrio que es anti-empañado, se auto-limpia y es libre de reflejos.

David L. Chandler, MIT News Office. Original (en inglés).

Una de las características instantáneamente reconocibles del vidrio es la manera en la que refleja luz. Pero una nueva manera de crear texturas superficiales en el vidrio, desarrollada por investigadores del MIT, virtualmente elimina reflejos, produciendo vidrio que es casi irreconocible debido a su ausencia de reflejo – y cuya superficie causa que las gotas de agua reboten en él, como pequeñas bolas de hule.

El nuevo vidrio “multifuncional”, basado en nanotexturas superficiales que producen un arreglo de características cónicas, se auto-limpia y resiste el empañado y el reflejo, dicen los investigadores. Al final, esperan que pueda hacerse utilizando un proceso de manufactura económico que podría aplicarse a dispositivos ópticos, a pantallas de teléfonos inteligentes y televisores, paneles solares, parabrisas de autos e incluso ventanas en edificios.

La tecnología es descrita en un artículo publicado en el diario ACS Nano, escrito conjuntamente con los estudiantes graduados en ingeniería mecánica Kyoo-Chul Park y Hyungryul Choi, el antiguo posdoctorado Chih-Hao Chang, el profesor de ingeniería química Robert Cohen, y los profesores de ingeniería mecánica Gareth McKinley y George Barbastathis.

Paneles fotovoltáicos, explica Park, pueden perder hasta el 40 por ciento de su eficiencia dentro de seis meses conforme el polvo y la suciedad se acumulan en sus superficies. Pero un panel solar protegido por el nuevo vidrio que se auto-limpia, dice, tendría mucho menos problema. Adicionalmente, el panel sería más eficiente por que más luz sería transmitida a través de su superficie, en lugar de ser reflejada – especialmente cuando los rayos del sol están inclinados en un ángulo agudo al panel. En esos momentos, como temprano por las mañanas y antes del anochecer por las tardes, el vidrio convencional podría reflejar más del 50 por ciento de la luz, mientras que una superficie anti-reflejante reduciría el reflejo a un nivel insignificante.

Mientras que algo del trabajo anterior solamente trataba paneles solares con recubrimiento hidrofóbico, las nuevas superficies multifuncionales creadas por el equipo del MIT son aún más efectivas al repeler el agua, manteniendo los páneles limpios durante más tiempo, dicen los investigadores. Adicionalmente, recubrimientos hidrofóbicos existentes no previenen pérdidas por reflejo, dándole al nuevo sistema otra ventaja más.

Otras aplicaciones podrían incluir dispositivos ópticos como microscopios y cámaras a ser usadas en entornos húmedos, donde sus capacidades tanto anti-reflejos como anti-empañado podrían ser útiles. En dispositivos touch-screen, el vidrio no solo eliminaría los reflejos, sino que también resistiría la contaminación por sudor.

En definitiva, si el costo de dicho vidrio puede ser reducido lo suficiente, incluso ventanas de autos podrían beneficiarse, dice Choi, limpiándose a sí mismas de la suciedad y la arena en la superficie exterior de las ventanas, eliminando brillo y reflejos que pueden afectar la visibilidad, y previniendo el empañado en las superficies interiores.

El patrón de la superficie – que consiste en un arreglo de conos a nanoescala que son cinco veces tan altos como el ancho de su base de 200 nanómetros – está basado en un nuevo acercamiento de fabricación que desarrolló el equipo del MIT utilizando recubrimiento en una superficie de vidrio con varias capas delgadas, incluyendo una capa fotoresistiva, la cual es iluminada después con un patrón de reja y removida mediante grabado; grabados sucesivos producen las superficies cónicas. El equipo ya ha aplicado por una patente para el proceso.

Debido a que la forma de la superficie es nanotexturizada – en lugar de algún método particular de alcanzar la forma – la que provee las características únicas, Park y Choi dicen que en el futuro filmes de vidrios o polímeros transparentes podrían ser fabricados con dichas características superficiales simplemente pasándolas a través de un par de rollos de textura mientras aún están parcialmente fundidos; dicho proceso agregaría muy poco al costo de la manufactura.

Los investigadores dicen que obtuvieron su inspiración de la naturaleza, donde las superficies texturizadas que van desde las hojas del loto hasta los caparazones del escarabajo desértico y los ojos de las palomillas (o polillas) se han desarrollado en formas que comúnmente tienen múltiples propósitos a la vez. Aunque los arreglos de nanoconos puntiagudos en la superficie aparecen frágiles cuando se ven microscópicamente, los investigadores dicen que sus cálculos muestran que deben ser resistentes a un amplio rango de fuerzas, desde el impacto por gotas de lluvia en un fuerte aguacero o al polen y la arena cargados por el viento o hasta un golpe con un dedo. Pruebas adicionales serán necesarias para demostrar qué tan bien las superficies nanotexturizadas se mantienen a través del tiempo en aplicaciones prácticas.

Andrew Parker, un superior visitando al becario de investigación en el Colegio Green Templeton en la Universidad de Oxford en el Reino Unido, quien no estuvo involucrado en este estudio, dice, “Superficies multifuncionales en animales y plantas son comunes. Por primera vez, hasta donde yo sé, este artículo enseña una lección en la eficiencia de manufactura haciendo un dispositivo anti-reflejos y anti-empañado. Esta es la manera en la que la naturaleza trabaja, y podría ser el futuro de una ingeniería más verde donde dos estructuras, y dos procesos de manufactura, son reemplazados por uno”.

La investigación fue patrocinada por la Oficina de Investigación del Ejército a través del Instituto para Nanotecnología del Soldado del MIT; la Oficina de Investigación Científica de la Fuerza Aérea; la Fundación de Investigación Nacional de Singapur a través del Centro de la Alianza para Investigación y Tecnología Singapur-MIT (SMART – Singapore-MIT Alliance for Research and Technology), y la Fundación Xerox. Park y Choi recibieron becas de Samsung y la Fundación Educativa Kwanjeong/Fundación de Becas STX, respectivamente.

Reimpreso con permiso de MIT News.

Fuente
“http://web.mit.edu/ (en inglés)

Nuevo material comparte muchas de las propiedades inusuales del grafeno

Materiales similares grafeno
Imagen: Dominick Reuter

Pequeños filmes de antimonio-bismuto tienen el potencial para nuevos chips semiconductores y dispositivos termoeléctricos.

David L. Chandler, MIT News Office. Original (en inglés)

El grafeno, una capa de carbono de un solo átomo de grueso, ha dado lugar a muchas investigaciones sobre sus propiedades únicas electrónicas, ópticas y mecánicas. Ahora, investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) han encontrado otro compuesto que comparte muchas de las características inusuales del grafeno – y en algunos casos tiene interesantes propiedades complementarias a este material tan discutido.

El material, un delgado filme de bismuto-antimonio, puede tener una variedad de diferentes características controlables, encontraron los investigadores, dependiendo de la temperatura ambiente y la presión, el grueso del material y la orientación de su crecimiento. La investigación, llevada a cabo por el candidato a doctorado de ciencia e ingeniería de materiales Shuang Tang y el profesor del instituto Mildred Dresselhaus, aparece en el diario Nano Letters.

Cómo el grafeno, el nuevo material tiene propiedades electrónicas que son conocidas como conos Dirac bidimensionales, un término que se refiere al trazado gráfico de energía con forma de cono contra la cantidad de movimiento para electrones moviéndose a través del material. Estas propiedades inusuales – que permiten a los electrones moverse de una manera diferente a la que es posible en la mayoría de los materiales – podría dar a los filmes de bismuto-antimonio propiedades que son altamente deseables para aplicaciones en la manufactura de chips electrónicos de próxima generación o en generadores y enfriadores termoeléctricos.

En dichos materiales, dice Tang, los electrones “pueden viajar como un rayo de luz”, potencialmente haciendo posibles nuevos chips con habilidades computacionales mucho más rápidas. El flujo de electrones podría ser en algunos casos cientos de veces más rápido que en chips convencionales de silicio, dice.

Similarmente, en una aplicación termoeléctrica – donde una diferencia de temperatura entre los dos lados de un dispositivo crea un flujo de corriente eléctrica – el movimiento mucho más rápido de electrones, junto con propiedades fuertes de aislamiento térmico, podrían permitir producción de energía mucho más eficiente. Esto podría probar ser útil en darle energía a satélites al explotar la diferencia de temperatura entre la luz solar y los lados oscuros, dice Tang.

Dichas aplicaciones siguen especulativas en este punto, dice Dresselhaus, por que se necesita más investigación para analizar propiedades adicionales y eventualmente para probar muestras del material. Este análisis inicial estuvo basado principalmente en modelado teórico de las propiedades del filme de bismuto-antimonio.

Hasta que este análisis sea llevado a cabo, dice Dresselhaus, “nunca pensamos en el bismuto” como teniendo el potencial para propiedades de cono de Dirac. Pero encuentros recientes inesperados involucrando una clase de materiales llamados aislantes topológicos sugirió otra cosa: Experimentos llevados a cabo por un colaborador Ucraniano sugirió que las propiedades del cono de Dirac podrían ser posibles en filmes de bismuto-antimonio.

Mientras que resulta que los delgados filmes de bismuto-antimonio pueden tener algunas propiedades similares a aquellas del grafeno, cambiando las condiciones también permite que una variedad de otras propiedades sean realizadas. Eso abre la posibilidad de diseñar dispositivos electrónicos hecho del mismo material con propiedades variantes, depositando una capa sobre la otra, en lugar de capas de diferentes materiales.

Las propiedades inusuales del material pueden variar de una dirección a otra: Electrones moviéndose en una dirección podrían seguir las leyes de la mecánica clásica, por ejemplo, mientras que aquellos moviéndose en una dirección perpendicular obedecen la física relativista. Esto podría permitir dispositivos que prueben la física relativista en una manera más barata y más simple que los sistemas existentes, dice Tang, aunque esto falta por probarse a través de experimentos.

“Nadie ha hecho ningún dispositivo todavía” del nuevo material, advierte Dresselhaus, pero añade que los principios son cercanos y los análisis necesarios deberían de tomar menos de un año en llevarse a cabo.

“Todo puede suceder, realmente no sabemos”, dice Dresselhaus. Dichos detalles quedan por ser subsanados, ella dice, añadiendo: “Muchos misterios quedan antes de que tengamos un dispositivo real”.

Joseph Heremans, un profesor de física en la Universidad Estatal de Ohio quien no estuvo involucrado en esta investigación, dice que mientras que algunas propiedades inusuales del bismuto se han conocido por un largo tiempo, “lo que es sorprendente es la riqueza de los sistemas calculados por Tang y Dresselhaus. La belleza de esta predicción es mejorada aún más por el hecho de que el sistema es bastante accesible experimentalmente”.

Heremans agrega que en investigaciones posteriores sobre las propiedades del material de bismuto-antimonio, “habrá dificultades, y algunas pocas ya son conocidas”, pero dice que las propiedades son lo suficientemente interesantes y prometedoras que “este artículo debe estimular un esfuerzo experimental más grande”.

El trabajo fue patrocinado con una beca de la Oficina de Investigación Científica de la Fuerza Aérea de los Estados Unidos.

Imagen: Shuang Tang / Profesora Mildred Dresselhaus.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nuevo recubrimiento para transplantes de cadera podría prevenir fallas prematuras

Implante huesos
Imagen: Hammond Lab

Filmes a nanoescala desarrollados en el MIT (Massachusetts Institute of technology – Instituto Tecnológico de Massachusetts) promueven el crecimiento de hueso, creando un sello más fuerte entre implantes y los propios huesos de los pacientes.

Anne Trafton, MIT News Office. Original (en inglés).

Cada año, más de un millón de estadounidenses reciben una prótesis artificial de cadera o rodilla. Dichos implantes están diseñados para durar muchos años, pero en alrededor del 17 por ciento de los pacientes que reciben un reemplazo de articulación, el implante eventualmente se afloja y tiene que ser reemplazado temprano, lo que puede causar peligrosas complicaciones para pacientes de edad avanzada.

Para ayudar a minimizar estas pesadas operaciones, un equipo de ingenieros químicos del MIT ha desarrollado un nuevo recubrimiento para implantes que podría ayudarlos a adherirse mejor al hueso del paciente, previniendo fallas prematuras.

“Esto permitiría al implante durar mucho más, hasta su tiempo de vida natural, con un riesgo más bajo de falla o infección”, dice Paula Hammond, profesora de ingeniería en el MIT y autora principal de un artículo sobre el trabajo que aparecerá en el diario Advanced Materials.

El recubrimiento, que induce las propias células del cuerpo a producir hueso que ajusta el implante en su lugar, también podría ser usado para curar fracturas y para mejorar los implantes dentales, de acuerdo a Hammond y al autor líder Nisarg Shah, un estudiante graduado en el laboratorio de Hammond.

Una alternativa al cemento óseo

Caderas artificiales consisten de una bola de metal en un tallo, conectando la pelvis y el femur. La bola rota dentro de una taza plástica dentro del socket de la cadera. Similarmente, las rodillas artificales consisten de placas y un tallo que permiten el movimiento del femur y la tibia. Para asegurar el implante, cirujanos usan cemento óseo, un polímero que se asemeja al vidrio cuando se endurece. En algunos casos, este cemento termina agrietándose y el implante se separa del hueso, causando dolor crónico y pérdida de movilidad para el paciente.

“Típicamente, en dicho caso, el implante es removido y reemplazado, lo que causa tremenda pérdida de tejido secundaria en el paciente que no habría ocurrido si el implante no hubiera fallado”, dice Shah. “Nuestra idea es prevenir la falla recubriendo estos implantes con materiales que podrían inducir el hueso natural que es generado dentro del cuerpo. Ese hueso crece en el implante y ayuda a mantenerlo en su lugar”.

El nuevo recubrimiento consiste de un filme muy delgado, que va desde los 100 nanómetros hasta un micrón, compuesto de capas de materiales que ayudan a promover el rápido crecimiento de hueso. Uno de los materiales, hidroxiapatita, es un componente natural del hueso, hecho de calcio y fosfato. Este material atrae células madre mesenquimatosas de la médula osea y provee una interfaz para la formación de nuevo hueso. La otra capa libera un factor de crecimiento que estimula las células madre mesenquimatosas a transformarse en células productoras de hueso llamadas osteoblastos.

Una vez que se forman los osteoblastos, comienzan a producir nuevo hueso para llenar los espacios rodeando el implante, asegurándolo al hueso existente y eliminando la necesidad del cemento de hueso. Tener tejido sano en ese espacio crea un enlace más fuerte y reduce bastante el riesgo de infección bacteriana alrededor del implante.

“Cuando el cemento óseo es usado, espacio muerto es creado entre el hueso existente y el tallo del implante, donde no hay vasos sanguíneos. Si bacterias colonizan este espacio se mantendrían proliferando, ya que el sistema inmune no puede alcanzarlas y destruirlas. Dicho recubrimiento sería auxiliar para prevenir que eso ocurra”, dice Shah.

Toma al menos dos o tres semanas para que los huesos llenen y completamente estabilicen el implante, pero un paciente aún sería capaz de caminar y hacer terapia física durante este tiempo, de acuerdo a los investigadores.

Control ajustable

Ha habido esfuerzos previos para recubrir implantes ortopédicos con hidroxiapatita, pero los filmes terminan siendo muy delgados e inestables, y tienden a separarse del implante, dice Shah. Otros investigadores han experimentado con inyectar el factor de crecimiento o depositarlo directamente en el implante, pero la mayoría termina siendo drenado fuera del sitio del implante, dejando muy poco detrás para tener algún efecto.

El equipo del MIT puede controlar el grosor de su filme y la cantidad de factor de crecimiento liberado usando un método llamado ensamblado capa-por-capa, en el que los componentes deseados son colocados una capa a la vez hasta que el grosor y la composición de la droga deseados son alcanzados.

“Esta es una ventaja significativa por que otros sistemas hasta ahora no han podido controlar la cantidad de factor de crecimiento que necesitas. Muchos dispositivos típicamente deben usar cantidades que podrían ser órdenes de magnitud más de lo que necesitas, lo que puede llevar a efectos secundarios no deseados”, dice Shah.

Los investigadores ahora están realizando estudios en animales que han mostrado resultados prometedores: Los recubrimientos llevan a una rápida formación de huesos, fijando los implantes en su lugar.

Este recubrimiento podría ser usado no solo para reemplazos de articulaciones, sino también para el fijado de placas y tornillos usados para arreglar fracturas de huesos. “Es muy versátil. Puedes aplicarlo a cualquier geometría y tener un recubrimiento uniforme todo alrededor”, dice Shah.

Otra posible aplicación es en implantes dentales. Convencionalmente, implantar un diente artificial es un proceso de dos pasos. Primero, un tornillo con rosca es introducido en la quijada; este tornillo debe estabilizarse integrándolo con el tejido de hueso que lo rodea por varios meses antes de que el paciente regrese a la clínica para tener el nuevo diente pegado al tornillo. Esto podría ser reducido a un proceso de un paso en el que el paciente recibe el implante entero usando una versión de estos recubrimientos.

La investigación fue patrocinada por Instituto Nacional del Envejecimiento, parte de los Institutos Nacionales de la Salud, y conducido por el Instituto David H. Koch para Investigación Integrativa del Cáncer con apoyo del Instituto para Nanotecnologías para Soldados en el MIT.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)