WISE de la NASA captura vieja estrella en erupción

WISE estrella
Imagen: NASA/JPL-Caltech

Las imágenes de WISE (Wide-field Infrared Survey Explorer) de la NASA, revelan una vieja estrella en medio de un estallido de fuego, rociando el cosmos con polvo. El hallazgo ofrece un raro vistazo en tiempo real en el proceso por el cual las estrellas como nuestro Sol siembran el universo con bloques de construcción para otras estrellas, planetas e incluso vida.

La estrella, catalogada como WISE J180956.27-330500.2, fue descubierta en imágenes tomadas durante el reconocimiento WISE en el año 2010, el estudio de infrarrojo más detallado hasta la fecha de la bóveda celeste entera. Se destacaba entre los demás objetos porque brillaba intensamente con luz infrarroja. Cuando se compara con imágenes tomadas hace más de 20 años, los astrónomos encontraron que la estrella era 100 veces más brillante.

“No estábamos buscando específicamente estos fenómenos, pero debido a que WISE escanea todo el cielo, pudimos encontrar tales objetos únicos”, dijo Poshak Gandhi de la Agencia de exploración aeroespacial Japonesa (JAXA), autor principal de un nuevo artículo que se publicará en el Astrophysical Journal Letters.

Los resultados indican que la estrella que explotó recientemente con grandes cantidades de polvo fresco, equivalente en masa a nuestro planeta Tierra. La estrella está calentando el polvo y lo hace brillar con luz infrarroja.

“Observando este período de cambio explosivo cuando en realidad es permanente, es muy raro,” dijo el co-autor Issei Yamamura de JAXA. “Estas erupciones de polvo probablemente ocurren sólo una vez cada 10.000 años en la vida de las estrellas viejas, y se cree que durará menos de unos cientos de años cada vez. Es un abrir y cerrar de ojos en términos cosmológicos”.

La vieja estrella está en la fase “gigante roja” de su vida. Nuestro propio sol se expandirá en una gigante roja en unos 5 mil millones de años. Cuando una estrella comienza a quedarse sin combustible, se enfría y se expande. Como las ráfagas de viento hasta las estrellas, arrojan capas de gas que se enfrían y se congelan en pequeñas partículas de polvo. Esta es una de las principales formas en que el polvo es reciclado en nuestro universo, haciendo su camino desde las estrellas más viejas de los recién nacidos sistemas solares. La otra forma, en la que el más pesado de los elementos se hace, es a través de las explosiones mortales, o supernovas, de las estrellas más masivas.

“Es una visión interesante sobre el programa de reciclaje cósmico”, dijo Bill Danchi, científico del programa WISE, en la sede de la NASA en Washington. “Estrellas evolucionadas, que ésta parece ser, contribuyen con alrededor del 50 por ciento de las partículas que componen los seres humanos”.

Los astrónomos saben de una estrella que actualmente está bombeando grandes cantidades de polvo. Llamado Objeto de Sakurai, esta estrella es mucho más adelantada en el proceso de envejecimiento que la recientemente descubierta por WISE.

Después de que Poshak y su equipo descubrieron la inusual estrella de polvo con WISE, regresaron a buscarla en anteriores estudios de infrarrojo de todo el cielo. El objeto no se ha visto en absoluto por el Satélite astronómico infrarrojo (IRAS), que voló en 1983, pero que se ve brillante en las imágenes tomadas como parte del Two Micron All-Sky Survey (2MASS) en 1998.

Poshak y sus colegas calculan que la estrella parece haber iluminado espectacularmente desde 1983. Los datos de WISE muestran que el polvo ha seguido evolucionando con el tiempo, con la estrella ahora escondida detrás de un velo muy espeso. El equipo planea dar un seguimiento con telescopios espaciales y terrestres para confirmar su naturaleza y para comprender mejor cómo las estrellas más viejas reciclan polvo en el cosmos.

El Laboratorio de Propulsion a Chorro, de Pasadena, California, administra y opera WISE para el Directorio de Misiones Científicas de la NASA en Washington. La nave espacial fue puesta en modo de hibernación después de escanear el doble de todo el cielo, completando sus objetivos principales. El investigador principal de WISE, Edward Wright, de la Universidad de California en Los Ángeles. La misión fue seleccionada competitivamente bajo el Programa de Exploradores de la NASA dirigido por el Centro de Vuelo Espacial Goddard de la agencia en Greenbelt, Md. El instrumento científico fue construido por el Laboratorio de Dinámica Espacial en Logan, Utah. La nave fue construida por Ball Aerospace & Technologies Corp. en Boulder, Colorado, operaciones de Ciencia y procesamiento de datos tendrá lugar en el Centro de Análisis y Procesamiento de Infrarrojo en el Instituto de Tecnología de California (Caltech) en Pasadena. Caltech dirige el JPL (Jet Propulsion Laboratory) para la NASA.

La misión IRAS fue un esfuerzo de colaboración entre la NASA (JPL), los Países Bajos y el Reino Unido. La misión 2MASS fue un esfuerzo conjunto entre Caltech, la Universidad de Massachusetts y la NASA (JPL). Los datos se archivan en el Centro de Análisis y Procesamiento Infrarrojo en Caltech.

Fuente
http://www.nasa.gov/ (en inglés)

El paso de Venus entre el Sol y la Tierra podrá obsevarse en junio de este año

Tránsito Venus
© Flickr.com / ridingwithrobots / cc-by-sa 3.0

Los astrónomos han observado las traslaciones de Venus desde el año de 1639.

Debido a los ángulos de inclinación de las órbitas de la Tierra y Venus, muy raramente se encuentran en una posicion que permite observar su tránsito.

Los tránsitos ocurren en un mismo esquema, los cuales se repiten cada 243 años, dos de ellos ocurren en el invierno cada 8 años, después sigue un período de 121 años y 6 meses, dos más en el verano con una pausa de 8 años y después le sigue un período de 105 años y 6 meses.

El tránsito del verano pasado ocurrió el 8 de junio del 2004, el siguiente será este próximo 6 de junio y después de esta fecha, ocurrirá nuevamente hasta el año 2117, una vez que hayan transcurrido los ciento cinco años y medio.

Referencia
http://spanish.ruvr.ru/

El proceso de Megaupload es ilegal y anticonstitucional, dice profesor de derecho

megaupload-logo
MegaUpload

Un experto en derecho ha criticado la decisión de los Estados Unidos por poner en marcha una causa penal contra Megaupload. El profesor de derecho Eric Golman sostiene que la acusación de Megaupload es una “pantalla deprimente de abuso de autoridad del gobierno” que ignora los derechos básicos constitucionales con el fin de proteger los intereses comerciales privados.

En los últimos meses muchas personas han estado desconcertadas por la decisión del Gobierno de los EE.UU. de cerrar y procesar a Megaupload.

Mientras que el departamento de justicia orgullosamente presentó el caso, como uno de los mayores casos criminales nunca antes interpuestos en los Estados Unidos, los críticos afirman que el Gobierno ha ido demasiado lejos.

Muchos expertos en derecho, de acuerdo con esta evaluación señalan que Megaupload es mucho menos culpable que lo interpretado por las autoridades.

Este fin de semana Eric Goldman, un profesor de la Escuela de Derecho en la Univesidad de Santa Clara, se unió con sus comentarios. Su ataque contra el gobierno de los Estados Unidos es mordaz, describiendo el proceso de Megaupload como una “pantalla deprimente de abuso de autoridad del gobierno”.

Poniéndose del lado del fundador de Megaupload Kim Dotcom, quien arremetió contra el gobierno anteriormente, el profesor afirma que el cierre del cyberlocker más popular del mundo fue un regalo para la industria del entretenimiento.

“La persecución del gobierno a Megaupload demuestra las implicaciones del gobierno que actúa como un proxy para intereses comerciales privados. El gobierno está usando sus poderes de ejecución para llevar a cabo lo que la mayoría de propietarios de derechos de autor no han estado dispuestos a hacer en un Tribunal Civil”, escribe Goldman.

“La puerta giratoria en el gobierno y la industria de contenidos” y el “deseo de la administración de Obama de ganarse el favor constante y contribuciones de las fuentes de adinerados”, son las principales motivaciones, Golman cita.

De acuerdo con el profesor, Megaupload no debería haber sido puesto fuera de línea. Afirma que es un equivalente moderno de la imprenta.

Además, por el cierre de la página y el argumento de que todos los datos pueden ser destruidos, las autoridades están destruyendo evidencia e ignorando los derechos constitucionales de millones de ciudadanos estadounidenses, quienes tenían datos almacenados en Megaupload.

En su alegato final, el profesor Goldman señala que acciones como la acusación de Megaupload sólo hará al público más escéptico acerca de los intentos del gobierno para controlar Internet en nombre de unas pocas empresas de varios miles de millones de dólares.

Más información
Ernesto en http://torrentfreak.com/ (en inglés)

Estudio de bosques de Siberia desde laboratorio aéreo

Laboratorio aéreo
Imagen: RIA Novosti

Un laboratorio ruso-francés instalado en un avión TU-134, está destinado para que científicos rusos y franceses realicen mediciones de la concentración de diversos gases (dióxido de carbono, ozono, metano, vapor de agua, partícula de aerosol) y hollín, en el territorio de Siberia Occidental, para poder evaluar la capacidad que tienen los bosques siberianos para afrontar el calentamiento global. Esta es la primera vez que se realizará desde el aire un análisis preciso de la atmósfera y del balance térmico de esta región.

El objetivo de esta investigación es entender como la taiga está cumpliendo su función de “pulmones del planeta”, como lo hace también la masa forestal del Amazonas.

Boris Belan, quien es el subdirector del Instituto de óptica de la atmósfera de Tomsk, apunta:
“Hasta el 2005 podíamos afirmar con seguridad que los bosques siberianos, cumplían esta tarea. Pero desde el 2005 al 2008 se constató la tendencia de que había comenzado a crecer la concentración de gas carbónico cerca del suelo, es decir, da la impresión de que la vegetación no absorbe las emanaciones adicionales de gas carbónico”.

Para determinar si este proceso es periódico y reversible, será necesario realizar mediciones y observaciones durante uno o dos años. Además del laboratorio aéreo, se recurrirá a las estaciones terrestres de control, para registrar los flujos crecientes o decrecientes de la radiación, el contenido de vapor de agua y de ozono de la atmósfera. Las estaciones TOR estudiarán las composiciones de gases y de aerosoles de la atmósfera. Además se tomarán en cuenta los datos de los sistemas satelitales de los Estados Unidos, de observación del medio ambiente.

Referencia
http://spanish.ruvr.ru/

Las bebidas energéticas e isotónicas son dañinas para los dientes

Bebidas dañinas dientes
© http://www.askwoman.ru

De acuerdo con un estudio publicado en la revista General Dentistry, las bebidas energéticas e isotónicas (bebidas con gran capacidad de rehidratación) dañan el esmalte de los dientes de las personas.

Durante esta investigación se analizaron 9 bebidas energéticas y 13 isotónicas, y se comprobó que los niveles de acidez variaban dependiendo de la bebida y del sabor.

Para poder determinar el efecto que tienen estas bebidas sobre el esmalte de los dientes, se colocaron muestras de esmalte en cada una de las bebidas durante 15 minutos, después se sumergieron durante 2 horas en saliva artificial. Este procedimiento se repitió 4 veces al día, durante 5 días.

Al término de estos 5 días, la erosión del esmalte ya era muy evidente. También se comprobó que las bebidas energéticas causan mayor daño al esmalte, en comparación con las bebidas isotónicas.

Advierten los científicos que los daños del esmalte dental son irreversibles y hacen que los dientes se vuelvan más sensibles y más vulnerables ante las caries.

Referencia
http://sp.rian.ru/

Incentivos algorítmicos

Algoritmos incentivos
Imagen: Howard Pyle

Un nuevo giro en trabajo pionero hecho por criptógrafos del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) hace casi 30 años podría llevar a mejores maneras de estructurar contratos.

Larry Hardesty, MIT News Office. Original (en inglés).

En 1993, los investigadores criptógrafos del MIT Shafi Goldwasser y Silvio Micali compartieron el primer premio Gödel para la ciencia computacional teórica por su trabajo en pruebas interactivas – un tipo de juego matemático en el que un jugador intenta extraer información confiable de un interlocutor no confiable.

En su innovador artículo de 1985 sobre el tema, Goldwasser, Micali y el doctor Charles Rackoff de la Universidad de Toronto propusieron un tipo particular de prueba interactiva, llamada prueba de cero-conocimiento, en la que un jugador puede establecer que él o ella conoce alguna información secreta sin llegar a revelarla. Hoy en día, pruebas de cero-conocimiento son utilizadas para asegurar transacciones entre instituciones financieras y varias compañías nuevas han sido fundadas para comercializarlas.

En el Simposio sobre Teoría Computacional de la Asociación de Maquinaria Computacional en Mayo, Micali, el profesor de Ingeniería en el MIT, y el estudiante graduado Pablo Azar presentarán un nuevo tipo de juego matemático al que están llamando una prueba racional; varía las pruebas interactivas dándoles un componente económico. Cómo las pruebas interactivas, las pruebas racionales pueden tener implicaciones para la criptografía pero también podrían sugerir nuevas maneras de estructurar incentivos en contratos.

“Mientras que estre trabajo es sobre asimetría de información”, añade Micali. “En la ciencia computacional, pensamos que información valiosa es el resultado de un largo cálculo, un cálculo que no puedo hacer yo mismo”. Pero los economistas, dice Micali, modelan el conocimiento como una distribución de probabilidad que precisamente describe un estado de la naturaleza. “Era claro para mi que ambas cosas tenían que converger”, dijo.

Una prueba interactiva clásica involucra dos jugadores, a veces nombrados Arturo y Merlín. Arturo tiene un problema complejo que necesita resolver, pero sus recursos computacionales son limitados; Merlín, por otro lado, tiene recursos computacionales pero no es confiable. Una prueba interactiva es un procedimiento por medio del cual Arturo le hace a Merlín una serie de preguntas. Al final, aunque Arturo no puede resolver el problema por sí mismo, puede decir si la solución que Merlín le ha dado es válida.

En una prueba racional, Merlín sigue siendo no confiable, pero es un actor racional en el sentido económico: Cuando es enfrentado con una decisión, siempre elegirá la opción que maximice su recompensa. “En la prueba interactiva clásica, si haces trampa, eres atrapado”, Azar explica. “En este modelo, si haces trampa, obtienes menos dinero”.

Conexión de complejidad

Investigación en pruebas interactivas y pruebas racionales cae bajo la categoría de la teoría de complejidad computacional, que clasifica problemas computacionales de acuerdo a qué tan difíciles son de resolver. Las dos clases de complejidad mejor conocidas son P y NP. A grandes rasgos, P es un grupo de problemas relativamente fáciles, mientras que NP contiene algunos problemas que, hasta donde se sabe, son muy, muy difíciles.

Problemas en NP incluyen la factorización de grandes números, la selección de una ruta óptima para un vendedor que viaja, y los llamados problemas de satisfacibilidad, en los que uno debe encontrar condiciones que satisfagan conjuntos de restricciones lógicas. Por ejemplo, es posible idear una lista de asistencia para una fiesta que satisfaga la expresión lógica (Alicia O Bob Y Carol) Y (David Y Ernie Y NO Alice)? (Si: Bob, Carol, David y Ernie van a la fiesta, pero Alice no). De hecho, la gran mayoría de los problemas difíciles en NP pueden ser replanteados como problemas de satisfacibilidad.

Para tener un sentido de como funcionan las pruebas racionales, considera la pregunta de cuántas soluciones tiene un problema de satisfacibilidad – problemas aún más difíciles que encontrar una sola solución. Supón que el problema de satisfacibilidad es una versión más complicada del problema de la lista de la fiesta, uno que involucra 20 invitados. Con 20 invitados, hay 1,048,576 posibilidades para la composición final de la fiesta. ¿Cuántas de esas satisfacen la expresión lógica? Arturo no tiene suficiente tiempo para probarlas todas.

¿Pero que sucede si Arturo en su lugar subasta un boleto en una lotería? Incluso escribirá una lista perfectamente aleatoria de asistentes a la fiesta – Alice si, Bob no, Carol si y así sucesivamente – y si satisface la expresión, le dará a quien tenga el boleto $1,048,576. ¿Cuánto ofrecerá Merlín por el boleto?

Supon que Merlín sabe que hay exactamente 300 soluciones para el problema de satisfacibilidad. Las posibilidades de que la lista de la fiesta de Arthur sea uno de ellas son 300 en 1,048,576. De acuerdo al análisis econométrico estándar, una posibilidad de 300 en 1,048,576 vale exactamente $300. Así que si Merlín es racional, apostará $300 por el boleto. De esa información, Arturo puede deducir el número de soluciones.

Knockout a la primera ronda

Los detalles son más complicados que eso, y por supuesto, con muy pocas excepciones, nadie en el mundo real quiere poner un millón de dólares para aprender la respuesta a un problema matemático. Pero el resultado del artículo de los investigadores es que con pruebas racionales, pueden establecer en una ronda – “¿Qué ofreces?” – lo que podría requerir millones de rondas usando pruebas interactivas clásicas. “La interacción, en la práctica, es costosa”, dice Azar. “Es costoso enviar mensajes por una red. Reduciendo la interacción de un millón de rondas a una provee ganancias significativas en tiempo”.

“Pienso que es otro caso donde pensamos que entendemos que es una prueba, y hay un giro, y obtenemos algún resultado inesperado”, dice Moni Naor, la presidenta en el Departamento de Ciencia Computacional y Matemáticas Aplicadas en el Instituto Israelí de Ciencia Weizmann. “Lo hemos visto en el pasado con pruebas interactivas, que resultaron ser muy poderosas, mucho más poderosas de lo que normalmente piensas que lo son pruebas que escribes y verificas”. Con pruebas racionales, dice Naor, “tenemos otro giro, si asignas alguna racionalidad teórica al demostrador, entonces la prueba es otra cosa en la que no pensamos en el pasado”.

Naor advierte que el trabajo está “solo en el comienzo”, y que es difícil decir cuando dará resultados prácticos, y lo que podrían ser. Pero “claramente, vale la pena estudiar”, dijo. “En general, la combinación de la investigación en complejidad, criptografía y teoría de juego es prometedora”.

Micali está de acuerdo. “Pienso que esta es una buena base para futuras exploraciones”, dijo. “Justo ahora, la hemos desarrollado para problemas que son muy, muy difíciles. ¿Pero que hay de los problemas que son muy, muy simples?”. Sistemas de prueba racional que describen interacciones simples podrían tener una aplicación en crowsourcing, una técnica mediante la cual tareas computacionales que son fáciles para los humanos pero difíciles para las computadoras son distribuidas por Internet a ejércitos de voluntarios que reciben pequeñas recompensas financieras por cada tarea que completan. Micali imagina que podrían incluso ser usadas para sistemas biológicos, en los que organismos individuales – o células iguales – pueden ser pensados como productores y consumidores.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Comcast elogia acuerdo de medidas enérgicas contra BitTorrent

Gerard Lewis
Gerard Lewis

A partir de este verano, millones de usuarios de BitTorrent en los Estados Unidos serán objeto de seguimiento como parte de un acuerdo voluntario entre la MPAA (Motion Picture Association of America), la RIAA (Recording Industry Association of America) y todos los principales Proveedores de Servicios de Internet (ISP). Aquellos que sean atrapados compartiendo obras con derechos de autor recibirán varios mensajes de advertencia y eventual sanción si continúan con la infracción. Al comentar sobre los planes, el vicepresidente de Comcast Gerard Lewis elogió la cooperación como un buen modelo que garantice la privacidad, y al mismo tiempo que eduque al público.

La semana pasada la Campaña de Coalición Creativa organizó una conferencia sobre medidas contra la Piratería.

Uno de los principales oradores en el evento fue Gerard Lewis, Vice Presidente del Proveedor de Internet Comcast, quien informó a los participantes del próximo sistema de alertas acerca de los derechos de autor que se activará en tres meses.

El sistema será manejado por el Centro de Información de derechos de autor, y es el resultado de un acuerdo voluntario entre titulares de derechos de autor y todos los mayores Proveedores de Servicios de Internet que firmaron el verano pasado.

Según el acuerdo una tercera empresa recogerá las direcciones IP de los presuntos infractores de BitTorrent y otras redes públicas de intercambio de archivos. Los proveedores de Internet a continuación, notificarán a estos infractores y les dirán que su comportamiento es inaceptable. Después de seis advertencias del ISP, entonces se puede tomar una variedad de medidas represivas, que incluye la opción de cortar la conexión al infractor de manera temporal.

En su discurso el Vice Presidente de Comcast explicó que el sistema de “seis strikes” es necesario porque la ley DMCA (Digital Millenium Copyright Act) no funciona bien para las infracciones de P2P. En Cambio, los titulares de derechos de autor y Proveedores de Servicios de Internet necesitaron un enfoque más flexible, que culminó en el sistema de alertas de derechos de autor y un memorándum histórico de entendimiento.

Lewis continuó enfatizando en que el acuerdo salvaguarda la intimidad de los suscriptores, ya que los titulares de derechos de autor no obtienen los datos personales de los presuntos piratas. Las advertencias son en su mayoría educativas, informativas, y la gente apunta a las fuentes de donde pueden descargar los contenidos legalmente. Además, Lewis dijo que es importante que las medidas represivas no interrumpan los servicios vitales, tales como llamadas telefónicas.

El impacto de la versión de los “seis strikes” en los Estados Unidos se hará evidente en los próximos meses.

Más información
Ernesto en http://torrentfreak.com/ (en inglés)

Nuevo material comparte muchas de las propiedades inusuales del grafeno

Materiales similares grafeno
Imagen: Dominick Reuter

Pequeños filmes de antimonio-bismuto tienen el potencial para nuevos chips semiconductores y dispositivos termoeléctricos.

David L. Chandler, MIT News Office. Original (en inglés)

El grafeno, una capa de carbono de un solo átomo de grueso, ha dado lugar a muchas investigaciones sobre sus propiedades únicas electrónicas, ópticas y mecánicas. Ahora, investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) han encontrado otro compuesto que comparte muchas de las características inusuales del grafeno – y en algunos casos tiene interesantes propiedades complementarias a este material tan discutido.

El material, un delgado filme de bismuto-antimonio, puede tener una variedad de diferentes características controlables, encontraron los investigadores, dependiendo de la temperatura ambiente y la presión, el grueso del material y la orientación de su crecimiento. La investigación, llevada a cabo por el candidato a doctorado de ciencia e ingeniería de materiales Shuang Tang y el profesor del instituto Mildred Dresselhaus, aparece en el diario Nano Letters.

Cómo el grafeno, el nuevo material tiene propiedades electrónicas que son conocidas como conos Dirac bidimensionales, un término que se refiere al trazado gráfico de energía con forma de cono contra la cantidad de movimiento para electrones moviéndose a través del material. Estas propiedades inusuales – que permiten a los electrones moverse de una manera diferente a la que es posible en la mayoría de los materiales – podría dar a los filmes de bismuto-antimonio propiedades que son altamente deseables para aplicaciones en la manufactura de chips electrónicos de próxima generación o en generadores y enfriadores termoeléctricos.

En dichos materiales, dice Tang, los electrones “pueden viajar como un rayo de luz”, potencialmente haciendo posibles nuevos chips con habilidades computacionales mucho más rápidas. El flujo de electrones podría ser en algunos casos cientos de veces más rápido que en chips convencionales de silicio, dice.

Similarmente, en una aplicación termoeléctrica – donde una diferencia de temperatura entre los dos lados de un dispositivo crea un flujo de corriente eléctrica – el movimiento mucho más rápido de electrones, junto con propiedades fuertes de aislamiento térmico, podrían permitir producción de energía mucho más eficiente. Esto podría probar ser útil en darle energía a satélites al explotar la diferencia de temperatura entre la luz solar y los lados oscuros, dice Tang.

Dichas aplicaciones siguen especulativas en este punto, dice Dresselhaus, por que se necesita más investigación para analizar propiedades adicionales y eventualmente para probar muestras del material. Este análisis inicial estuvo basado principalmente en modelado teórico de las propiedades del filme de bismuto-antimonio.

Hasta que este análisis sea llevado a cabo, dice Dresselhaus, “nunca pensamos en el bismuto” como teniendo el potencial para propiedades de cono de Dirac. Pero encuentros recientes inesperados involucrando una clase de materiales llamados aislantes topológicos sugirió otra cosa: Experimentos llevados a cabo por un colaborador Ucraniano sugirió que las propiedades del cono de Dirac podrían ser posibles en filmes de bismuto-antimonio.

Mientras que resulta que los delgados filmes de bismuto-antimonio pueden tener algunas propiedades similares a aquellas del grafeno, cambiando las condiciones también permite que una variedad de otras propiedades sean realizadas. Eso abre la posibilidad de diseñar dispositivos electrónicos hecho del mismo material con propiedades variantes, depositando una capa sobre la otra, en lugar de capas de diferentes materiales.

Las propiedades inusuales del material pueden variar de una dirección a otra: Electrones moviéndose en una dirección podrían seguir las leyes de la mecánica clásica, por ejemplo, mientras que aquellos moviéndose en una dirección perpendicular obedecen la física relativista. Esto podría permitir dispositivos que prueben la física relativista en una manera más barata y más simple que los sistemas existentes, dice Tang, aunque esto falta por probarse a través de experimentos.

“Nadie ha hecho ningún dispositivo todavía” del nuevo material, advierte Dresselhaus, pero añade que los principios son cercanos y los análisis necesarios deberían de tomar menos de un año en llevarse a cabo.

“Todo puede suceder, realmente no sabemos”, dice Dresselhaus. Dichos detalles quedan por ser subsanados, ella dice, añadiendo: “Muchos misterios quedan antes de que tengamos un dispositivo real”.

Joseph Heremans, un profesor de física en la Universidad Estatal de Ohio quien no estuvo involucrado en esta investigación, dice que mientras que algunas propiedades inusuales del bismuto se han conocido por un largo tiempo, “lo que es sorprendente es la riqueza de los sistemas calculados por Tang y Dresselhaus. La belleza de esta predicción es mejorada aún más por el hecho de que el sistema es bastante accesible experimentalmente”.

Heremans agrega que en investigaciones posteriores sobre las propiedades del material de bismuto-antimonio, “habrá dificultades, y algunas pocas ya son conocidas”, pero dice que las propiedades son lo suficientemente interesantes y prometedoras que “este artículo debe estimular un esfuerzo experimental más grande”.

El trabajo fue patrocinado con una beca de la Oficina de Investigación Científica de la Fuerza Aérea de los Estados Unidos.

Imagen: Shuang Tang / Profesora Mildred Dresselhaus.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Cassini encuentra luna de saturno que tiene cualidades similares a planetas

Luna de Saturno
Imagen: NASA / JPL / Space Science Institute

Datos de la Misión Cassini de la NASA revela que la luna de Saturno Febe (Phoebe) tiene más cualidades similares a planetas que lo que se pensaba anteriormente.

Los científicos tuvieron su primer vistazo de cerca a Febe cuando cassini comenzó a explorar el sistema de Saturno en 2004. Usando datos de múltiples de instrumentos de la nave y un modelo informático de la química de la luna, la geofísica y la geología, los científicos encontraron que Febe era una llamada planetesimal, o remanente planetario de un bloque de construcción. Los hallazgos aparecieron en abril en un número de la revista Icarus.

“A diferencia de los cuerpos primitivos como los cometas, Febe parece haber evolucionado activa por un tiempo antes de que se estancara”, dijo Julie Castillo-Rogez, un científico planetario del Laboratorio de Propulsión a chorro de la NASA, en Pasadena, California. “Los objetos como Febe se cree que se condensan muy rápidamente. Por lo tanto, que representan bloques de construcción de planetas. Ellos dan a los científicos pistas sobre qué condiciones había en la época del nacimiento de los planetas y sus lunas”.

Imágenes de Cassini sugieren que Febe se originó en el lejano cinturón de Kuiper, la región de los antiguos cuerpos helados, rocosos más allá de la órbita de Neptuno. Los datos muestran que Febe era esférica y caliente a principios de su historia y tiene material denso y rico en rocas concentrado cerca de su centro. Su densidad media es aproximadamente la misma que plutón, otro objeto en el Cinturón de Kuiper. Febe probablemente fue capturado por la gravedad de Saturno, cuando de alguna manera se acercó al planeta gigante.

Saturno está rodeado por una nube de la lunas irregulares que circundan el planeta en órbitas inclinadas desde la órbita de saturno alrededor del sol, el llamado plano ecuatorial. Febe es la mas grande de las Lunas irregulares y también tiene la distinción de que orbita hacia atrás en relación a las otras Lunas. Las grandes lunas de Saturno parecen haberse formado de gas y polvo que orbita en el plano ecuatorial del planeta. Estas Lunas actualmente orbitan alrededor de Saturno en ese mismo plano.

“Al combinar los datos de Cassini con técnicas de modelado aplicadas previamente a otros cuerpos de sistemas solares, hemos sido capaces de retroceder en el tiempo y aclarar por qué es tan diferente del resto del sistema de Saturno”, dijo Jonathan Lunine, un co-autor en el estudio y un miembro del equipo Cassini en La Universidad Cornell de Ithaca, Nueva York.

Análisis sugieren que Febe nació en los primeros 3 millones de años del nacimiento del sistema solar, que ocurrió hace 4.5 millones de años. La luna puede originalmente haber sido porosa pero parece haber colapsado en sí misma según se calentó. Febe desarrolló una densidad de 40 por ciento superior a la media de las lunas internas de Saturno.

Objetos del tamaño de Febe han sido durante mucho tiempo cree que se forman como cuerpos en forma de papa y se mantuvo de esa manera a lo largo de su vida. Si dicho objeto se formó con suficiente antelación en la historia del sistema solar, podría haber albergado el tipo de material radioactivo que produciría una gran cantidad de calor sobre una breve escala de tiempo. Esto calentaría el interior y remodelaría la forma de la luna.

“De la forma vista en imágenes de Cassini y el modelado de la historia de sus cráteres, fuimos capáces de ver que Febe comenzó con una forma casi esférica, en lugar de ser una forma irregular más suavizado en una esfera por los impactos

Probablemente Febe se mantuvo cálido por decenas de millones de años antes de congelarse. El estudio sugiere que el calor también le permitió a la luna hospedar agua líquida alguna vez. Esto podría explicar los rastros de material rico en agua en la superficie de Febe detectado previamente por Cassini.

El nuevo estudio también es consistente con la idea de que varios cientos de millones de años después de que Febe se enfrió, la luna se desplazo al sistema solar interno en un reacomodo del sistema solar. Febe era lo suficientemente grande para sobrevivir esta turbulencia.

Más de 60 lunas son conocidas en la órbita de Saturno, que varían drásticamente en la forma, tamaño, origen y edad de la superficie. Los científicos que usan los dos observatorios terrestres y las cámaras de Cassini continúan la búsqueda de los otros.

La misión Cassini-Huygens es un proyecto cooperativo de la NASA, La Agencia Espacial Europea y La Agencia Espacial Italiana. JPL (Jet Propulsion Laboratory – Laboratorio de Propulsión a Chorro) dirige la misión para la Dirección de Misiones Científicas de la agencia en Washington. El Instituto de Tecnología de California en Pasadena dirige el JPL para la NASA.

Fuente
www.nasa.gov/ (en inglés)