Nanopartículas híbridas cobre-oro convierten el CO2

Cobre oro CO2
Imagen: Zhichuan Xu

Podrían reducir las emisiones de gases de invernadero

Jennifer Chu, MIT News Office. Original (en inglés).

Cobre – el material del que están hechos los centavos y las teteras – también es uno de los pocos metales que pueden convertir el dióxido de carbono en combustibles de hidrocarbono con poca energía relativamente. Cuando se le da la forma de un electrodo y es estimulado con voltaje, el cobre actúa como un fuerte catalizador, iniciando una reacción electromagnética con el dióxido de carbono que reduce el gas de efecto invernadero en metano o metanol.

Varios investigadores alrededor del mundo han estudiando el potencial del cobre como medio energéticamente eficiente de reciclar emisiones de dióxido de carbono en plantas de energía: En lugar de ser liberado en la atmósfera, el dióxido de carbono sería hecho circular a través de un catalizador de cobre y convertido en metano o metanol – que entonces le daría energía al resto de la planta por combustión, o sería convertido en productos químicos como etileno. Dicho sistema, emparejado con energía solar o eólica, podría reducir enormemente las emisiones de gas de invernadero de plantas alimentadas por carbón y plantas alimentadas por gas natural.

Pero el cobre es temperamental: fácilmente oxidable, como cuando viejos centavos se vuelven verdes. Como resultado, el metal es inestable, lo que puede alentar significativamente su reacción con el dióxido de carbono y producir residuos no deseados como monóxido de carbono y ácido fórmico.

Ahora los investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) han encontrado una solución que podría reducir aún más la energía necesaria para que el cobre convierta el dióxido de carbono, mientras además hacen al metal mucho más estable. El grupo ha diseñado pequeñas nanopartículas de cobre mezcladas con oro, que es resistente a la corrosión y la oxidación. Los investigadores observaron que solo un toque de oro vuelve al cobre mucho más estable. En los experimentos, recubrieron electrodos con las nanopartículas híbridas y encontraron que mucha menos energía era necesaria para que estas nanopartículas diseñadas reaccionaran con el dióxido de carbono, comparado a nanopartículas de puro cobre.

Un artículo detallando los resultados aparecerá en el diario Chemical Communications; la investigación fue patrocinada por la Fundación Nacional de Ciencia. La coautora Kimberly Hamad-Schifferli del MIT dice que los descubrimientos apuntan a un medio potencialmente de eficiencia energética de recudir las emisiones de dióxido de carbono de las plantas de energía.

“Normalmente tienes que poner mucha energía en convertir dióxido de carbono en algo útil”, dice Hamad-Schifferli, una profesora asociada de ingeniería mecánica e ingeniería biológica. “Demostramos que nanopartículas híbridas cobre-oro son mucho más estables, y tienen el potencial de reducir la energía que necesitas para la reacción”.

Reduciendo el tamaño

El equipo eligió diseñar partículas al nivel de nanoescala para “obtener más ventaja económica”, dice Hamad-Schifferli: Mientras más pequeñas las partículas, más grande es el área superficial disponible para la interacción con las moléculas de dióxido de carbono. “Podrías tener más lugares para que el CO2 llegue y se pegue y sea convertido en algo más”, dice ella.

Hamad-Schifferli trabajó con Yang Shao-Horn, el profesor asociado de Ingeniería Mecánica en el MIT, posdoctorado Zhichuan Xu y Erica Lai. El equipo se quedó en oro como un metal adecuado para combinarse con oro y cobre principalmente debido a sus propiedades conocidas.
(Investigadores habían combinado previamente oro y cobre en escalas mucho más grandes, notando que la combinación previno que el cobre se oxidara).

Para hacer las nanopartículas, Hamad-Schifferli y sus colegas mezclaron sales conteniendo oro en una solución de sales de cobre. Calentaron la solución, creando nanopartículas que fusionaron cobre con oro. Xu entonces puso las nanopartículas a través de una serie de reacciones, convirtiendo la solución en un polvo que fue usado para recubrir un pequeño electrodo.

Para probar la reactividad de las nanopartículas, Xu colocó el electrodo en un vaso de precipitado lleno se solución y dióxido de carbono en burbujas dentro de él. Aplicó un pequeño voltaje al electrodo, y midió la corriente resultante en la solución. El equipo razonó que la corriente resultante indicaría que tan eficientes eran las nanopartículas al reaccionar con el gas: Si las moléculas de CO2 estuvieran reaccionando con sitios en el electrodo – y después liberando para permitir que otras moléculas de CO2 reaccionen con los mismos sitios – la corriente aparecería como que un cierto potencial fue alcanzado, indicando una “rotación”. Si las moleculas monopolizan sitios en el electrodo, la reacción se alentaría, retrasando la aparición de la corriente al mismo potencial.

El equipo encontró finalmente que el potencial aplicado para alcanzar una corriente estable era mucho más pequeña para las nanopartículas híbridas cobre-oro que para el puro cobre y oro – una indicación de que la cantidad de energía requerida para ejecutar la reacción era mucho más baja que la requerida cuando se usaban nanopartículas de puro cobre.

Siguiendo adelante, Hamad-Schifferli dice que espera mirar más de cerca la estructura de las nanopartículas de cobre-oro para encontrar la configuración óptima para convertir dióxido de carbono. Hasta ahora, el equipo ha demostrado la efectividad de las nanopartículas compuestas de un tercio de oro y dos tercios de cobre, así como dos tercios de oro y un tercio de cobre.

Hamad-Schifferli admite que el recubrimiento de electrodos a escala industrial con oro puede volverse caro. Sin embargo, dice ella, el ahorro de energía y el potencial de reuso para dichos electrodos podría balancear los costos iniciales.

“Es un compromiso”, dice Hamad-Schifferli. “Obviamente el oro es mas caro que el cobre. Pero si te ayuda a obtener un producto que sea más atractivo como el metano en lugar del dióxido de carbono, y a un consumo de energía más bajo, entonces podría valer la pena. Si pudieras reusarlo una y otra vez, y la durabilidad es más alta debido al oro, eso es una ganancia”.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nanopartículas dirigidas muestran éxito en pruebas clínicas

Nanopartículas dirigidas
Imagen: Digizyme.Inc

Pequeñas partículas diseñadas para quedarse en células cancerosas logran reducir tumores con dosis más bajas que la quimioterapia tradicional.

Anne Trafton, MIT News Office. Original (en inglés).

Nanopartículas terapéuticas dirigidas que se acumulan en tumores mientras que pasan de lado células saludables han mostrado resultados prometedores en una prueba clínica que se está llevando a cabo, de acuerdo a una nueva revista académica.

Las nanopartículas tienen una molécula mensajera que les permite atacar específicamente células cancerosas, y son las primeras de dichas partículas dirigidas en entrar a estudios clínicos humanos. Originalmente desarrolladas por investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y el Hospital Brigham and Women en Boston, las partículas están diseñadas para cargar la droga de quimioterapia docetaxel, usada para tratar cánceres de pulmón, próstata y mama, entre otros.

En el estudio, que aparece en la edición del 4 de abril del diario Science Translational Medicine, los investigadores demuestran la habilidad de las partículas para dirigirse a un receptor encontrado en células cancerosas y acumularse en los sitios de tumores. Las partículas también se mostraron seguras y efectivas: muchos de los tumores de pacientes se encogieron como resultado del tratamiento, aún cuando recibieron dosis más bajas que las usualmente administradas.

“Los resultados clínicos iniciales de regresión de tumores incluso con dosis bajas de la droga validan nuestros descubrimientos pre-clínicos de que nanopartículas dirigidas se acumulan preferencialmente en tumores”, dice Robert Langer, profesor del Departamento de Ingeniería Química del Instituto David H. Koch en el MIT y un autor principal de la revista académica. “Intentos previos de desarrollar nanopartículas dirigidas no se han trasladado exitosamente a estudios clínicos humanos por la dificultad inherente de diseñar y escalar una partícula capaz de dirigirse a tumores, evadiendo el sistema inmune y liberando drogas en una forma controlada”.

La prueba clínica fase 1 fue realizada por investigadores en BIND Biosciences, una compañía cofundada por Langer y Omid Farokhzad en el 2007.

“Este estudio demuestra por primera vez que es posible generar medicinas con propiedades dirigidas y programables que pueden concentrar los efectos terapéuticos directamente en el sitio de la enfermedad, potencialmente revolucionando cómo enfermedades complejas como el cáncer son tratadas”, dice Farokhzad, director del Laboratorio de Nanomedicina y Biomateriales en el hospital Brigham and Women, profesor asociado de anestesia en la Escuela de Medicina de Harvard y un autor principal de la revista académica.

Investigadores en el Instituto del Cáncer Dana-Farber, el Colegio Médico Weill Cornell, Servicios de Investigación Clínica TGen en Phoenix y el Institudo del Cáncer Karmanos en Detroit también estuvieron involucrados en el estudio.

Partículas dirigidas

El laboratorio de Langer comenzó a trabajar en nanopartículas poliméricas a inicios de los 90, desarrollando partículas hechas de materiales biodegradables. A principios de esta década, Langer y Farokhzad comenzaron a colaborar para desarrollar métodos para dirigir activamente las partículas a moléculas encontradas en células cancerosas. Para el 2006, ya habían demostrado que las nanopartículas dirigidas pueden encoger tumores en ratones, pavimentando el camino para el desarrollo eventual y la evaluación de una nanopartícula dirigida llamada BIND-014, que entró en pruebas clínicas en enero del 2011.

Para este estudio, los investigadores recubrieron las nanopartículas con moléculas direccionadoras que reconocen una proteína llamada PSMA (prostate-specific membrane antigen – antígeno membranal específico de la próstata), encontrado abundantemente en la superficie de la mayoría de las células de tumores de la próstata así como muchos otros tipos de tumores.

Uno de los desafíos desarrollando nanoparticulas de entrega de drogas efectivas, dice Langer, las está diseñando para que puedan realizar dos funciones críticas: evadir la respuesta inmunitaria normal del cuerpo y alcanzar sus objetivos deseados.

“Necesitas exactamente la combinación correcta de estas propiedades, por que si no tienen la concentración correcta de moléculas dirigidoras, no alcanzarás las células que quieres, y si no tienen las propiedades sigilosas correctas, serán tomadas por los macrófagos”, dice Langer, también un miembro del Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT.

Las nanopartículas BIND-014 tienen tres componentes: uno que carga la droga, uno que apunte al PSMA, y uno que ayude a evadir macrófagos y las demás células inmunológicas. Hace unos pocos años, Langer y Farokhzad desarrollaron una forma de manipular estas propiedades de forma muy precisa, creando grandes colecciones de partículas diversas que podrían ser probadas para la composición ideal.

“Ellos sistemáticamente hicieron un grupo de materiales que variaban en las propiedades que ellos pensaron que importarían, y desarrollaron una manera de monitorearlos. Eso no ha sido hecho en este tipo de entorno antes”, dice Mark Saltzman, un profesor de ingeniería bioquímica en la Universidad de Yale quien no estuvo involucrado en este estudio. “Han tomado el concepto del laboratorio a las pruebas clínicas, lo que es muy impresionante”.

Todas las partículas están hechas de polímeros ya aprobados para uso médico por la Administración de Alimentos y Drogas (FDA – Food and Drug Administration) de los Estados Unidos.

Resultados clínicos

La prueba clínica fase 1 involucró a 17 pacientes con tumores avanzados o metastáticos que ya habían pasado por la quimioterapia tradicional. En pruebas fase 1, investigadores evalúan la seguridad de una droga potencial y estudian sus efectos en el cuerpo. Para determinar las dosis seguras, a los pacientes les fueron dadas dosis escaladas de nanopartículas. Hasta ahora, dosis de BIND-014 han alcanzado la cantidad de docetaxel usualmente dadas sin nanopartículas, sin nuevos efectos secundarios. Los efectos secundarios conocidos del docetaxel también han sido más suaves.

En las 48 horas después del tratamiento, los investigadores encontraron que la concentración de docetaxel en la sangre de los pacientes era 100 veces más alta con las nanopartículas comparadas al docetaxel administrado en su forma convencional. La más alta concentración en la sangre de BIND-014 facilitó el direccionamiento a los tumores resultando en una reducción de los tumores en pacientes, en algunos casos con dosis de BIND-014 que correspondía a un 20 por ciento de la cantidad de docetaxel normalmente dada. Las nanopartículas también fueron efectivas en cánceres en los que el docetaxel usualmente tiene poca actividad, incluyendo el cáncer cervical y el cáncer de los ductos de la bilis.

Los investigadores también encontraron que en animales tratados con la nanopartícula, la concentración de docetaxel en los tumores era hasta diez veces más altas que en animales tratados con inyecciones de docetaxel convencional las primeras 24 horas, y que el tratamiento con nanopartículas resultó en una reducción de tumores mejorada.

La prueba clínica fase 1 sigue llevándose a cabo; BIND Biosciences ahora planea las pruebas fase 2, que investigarán aún más la efectividad del tratamiento en un mayor número de pacientes.

El desarrollo inicial de las partículas en el MIT y en el Hospital Brigham and Women fue patrocinado con fondos del Instituto Nacional del Cáncer, el Instituto Nacional de Obtención de Imágenes Biomédicas y Bioingeniería, el Instituto David H. Koch para la Investigación Integrativa del Cáncer en el MIT, la Fundación del Cáncer de Próstata, un regalo de David H. Koch y el Centro del Cáncer de Próstata Dana-Farber de Harvard (SPORE). Desarrollo subsecuente por BIND Biosciences fue patrocinado con fondos del Instituto Nacional del Cáncer, el Instituto Nacional de Estándares y Tecnología, y BIND Biosciences. Todos los institutos son de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nanofábricas producen proteínas

Nanofábricas proteinas
Imagen: Avi Schroeder

Pequeñas partículas podrían manufacturar drogas contra el cáncer en el lugar donde está el tumor.

Anne Trafton, MIT News Office. Original (en inglés)

Drogas hechas de proteínas han mostrado promesas en tratar el cáncer, pero son difíciles de entregar porque el cuerpo usualmente rompe las proteínas antes de que alcance su destino.

Para sobreponerse a ese obstáculo, un equipo de investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) ha desarrollado un nuevo tipo de nanopartícula que puede sintetizar proteínas en demanda. Una vez que estas fábricas de proteínas alcanzan sus objetivos, los investigadores pueden convertir la síntesis de proteínas alumbrándolas con luz ultravioleta en ellas.

Las partículas podrían ser usadas para liberar pequeñas proteínas que matan las células cancerosas, y eventualmente proteínas más grandes como anticuerpos que disparan el sistema inmune para destruir los tumores, dice Avi Shroeder, un posdoctorado en el Instituto Para Investigación de Cáncer Integrativa David H. Koch del MIT y autor líder de una revista académica que aparece en el diario NanoLetters.

Esta es la primera prueba de concepto que puede sintetizar nuevos componentes de materiales inertes dentro del cuerpo”, dice Schroeder, quien trabaja en los laboratorios de Robert Langer, Profesor del Instituto David H. Koch del MIT, y Daniel Anderson, un profesor asociado de ciencias de la salud y tecnología e ingeniería química.

Langer y Anderson también son autores de la revista académica, junto con los antiguos posdoctorados del Instituto Koch Michael Goldber, Christian Kastrup y Christopher Levins.

Imitando a la naturaleza

A los investigadores se les ocurrió la idea de partículas constructoras de proteínas cuando trataban de pensar en nuevas maneras de atacar tumores metastásicos – aquellos que se esparcen del sitio original del cáncer a otras partes del cuerpo. Dichas metástasis causan el 90% de las muertes por cáncer.

Decidieron imitar la estrategia de manufactura de proteínas encontradas en la naturaleza. Células que guardan sus instrucciones para construir proteínas en ADN, el cual es entonces copiado en ARN mensajeros (ARNm o mRNA por sus siglas en inglés). Ese ARNm carga los planos de proteínas a estructuras celulares llamadas ribosomas, las que leen el ARNm y lo traducen en secuencias de aminoácidos. Los aminoácidos son encadenados juntos para formar proteínas.

“Queríamos usar maquinaria que ya había probado ser muy efectiva. Los ribosomas son usados en la naturaleza, y fueron perfeccionados por la naturaleza durante miles de millones de años para ser la mejor máquina que puede producir proteínas”, dice Schroeder.

Los investigadores diseñaron las nuevas nanopartículas para auto-ensamblarse de una mezcla que incluye lípidos – que forman los caparazones exteriores de las partículas – además de una mezcla de ribosomas, aminoácidos y las enzimas necesarias para la síntesis de proteínas. También incluyeron en la mezcla las secuencias de ADN para las proteínas deseadas.

El ADN es atrapado por un compuesto químico llamado DMNPE, que se enlaza a él. Este compuesto libera el ADN cuando es expuesto a luz ultravioleta.

“Quieres ser capaz de dispararlo para que el sistema solo se encienda cuando quieres que trabaje”, dice Schroeder. “Cuando las partículas son golpeadas por luz, el ADN es liberado de un compuesto que lo enjaula y entonces puede entrar al ciclo de producir las proteínas”.

Fábricas programables

En este estudio, las partículas fueron programadas para producir ya sea proteína fluorescente verde (GFP – green fluorescent protein) o luciferasa, ambas son fáciles de detectar. Pruebas en ratones mostraron que las partículas fueron exitosamente puestas a producir la proteína cuando luz ultravioleta las alumbró.

Esperar hasta que las partículas alcancen su destino antes de activarlas podría ayudarles a prevenir efectos secundarios de una droga particularmente tóxica, dice James Heath, un profesor de química en el Instituto de Tecnología de California. Sin embargo, más pruebas deben realizarse para demostrar que las partículas alcanzarían su destino intencionado en humanos, y que solo puedan ser utilizadas para producir proteínas terapéuticas, dice.

“Hay muchos detalles en los que aún debe trabajarse para que éste sea un acercamiento terapéutico viable, pero es un concepto realmente estupendo e innovador, y ciertamente hace funcionar la imaginación de uno”, dice Heath, quien no fue parte del equipo investigador.

Los investigadores ahora trabajan en partículas que puedan sintetizar drogas potenciales contra el cáncer. Algunas de estas proteínas son tóxicas para células cancerosas y saludables – pero usando este sistema de entrega, la producción de proteínas podría ser encendida solo en el tumor, evitando los efectos secundarios en células saludables.

El equipo también trabaja en nuevas maneras de activar las nanopartículas. Posibles acercamientos incluyen la producción disparada por el nivel de acidez u otras condiciones biológicas específicas a ciertas regiones del cuerpo o células.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Usando nanopartículas para mejorar la quimioterapia

Nanopartículas quimio

La quimioterapia es realmente un veneno para las células, se toma ventaja de el hecho de que los tumores tienen un metabolismo acelerado y de esta manera absorben el veneno más rápido que el resto del cuerpo y mueren antes de que nos mate a nosotros mismos. Aunque los doctores apuntan hacia los tumores cuando prescriben el uso de la quimioterapia, los compuestos golpean una gran variedad de lugares en el cuerpo, llevando a efectos secundarios como daño a la médula espinal y pérdida de cabello.

Para mejorar su precisión, investigadores han tratado de “empacar” estas drogas dentro de pequeños contenedores huecos que pueden ser dirigidos hacia los tumores dejando de lado los tejidos saludables. Pero el tamaño, forma y acomodo de estas “nanopartículas” puede afectar drásticamente donde y cuando son tomados. Ahora, los científicos han estudiando alrededor de 100 diferentes formas de nanopartículas y mostrado que cuando una droga de quimioterapia convencional es empacada dentro de la mejor de estas nanopartículas, es considerablemente más efectiva peleando contra el cáncer de próstata en animales comparado con la droga sola.

Imagen: J. Hrkach et al., Science Translational Medicine.

Más información
http://news.sciencemag.org/ (en inglés)

Ingenieros construyeron medusa robótica alimentada por hidrógeno

Medusa

Los Ingenieros de Virginia Tech dicen que, debido a que su medusa robótica es alimentada por una reacción catalítica basada en hidrógeno en lugar de ser por electricidad, teóricamente podría tener energía indefinidamente.

Cuando se toma en consideración que nuestra mejor opción para alimentar vehículos submarinos actualmente son las baterías, los reactores nucleares o enlaces con la superficie, un sistema de propulsión químico es innovador.

El Robojelly (por Jellyfish, el nombre en inglés de la Medusa), es una maravilla de ingeniería de materiales. Fue construido de hojas de nanotubos de carbón de múltiples capas recubiertas de un catalizador de nano-platino. Éstas son vueltas alrededor de una aleación que conserva la memoria de la forma hecha de niquel-titanio.

Cuanto la capa catalizadora de platino hace contacto con la mezcla de los gases de hidrógeno y oxígeno, se libera calor, que causa que la aleación de memoria cambie de forma, dándole energía al movimiento de la medusa. En términos simples.

Más información
http://motherboard.vice.com/ (en inglés)
El estudio (iopscience.iop.org) (en inglés, disponible gratis por 30 días, requiere registro)

Investigadores crean electrones exóticos que podrían llevar a nuevos materiales

Grafeno
Grafeno

Investigadores de la Universidad de Stanford y el Centro de Aceleración Lineal de Stanford (SLAC National Accelerator Laboratory) del Departamento de Energía crearon un sistema para manualmente diseñar electrones. El acomodo de electrones en un material define las propiedades de cada material, como se puede ver en el carbono, donde según sus propiedades éste se comporta como grafito, grafeno, carbón o un diamante.

Sus primeros ejemplos fueron estructuras con forma de panal de abeja hechas a mano inspiradas por el grafeno. Inicialmente estas estructuras se comportaban como el grafeno, aunque el grafeno es una forma pura de carbón y estas estructuras estaban hechas con monóxido de carbono.

Para cambiar las propiedades de los electrones, los investigadores reposicionaron las moléculas de monóxido de carbono en la superficie. Tomaron en cuenta como se acomodaría la estructura si ésta fuera expuesta a un campo magnético, y acomodaron los electrones de acuerdo a eso. Y el material se comenzó a comportar como si estuviera expuesto a un campo magnético, aunque nunca lo fue. Otros cambios fueron ajustar finamente la densidad de los electrones.

Esta investigación abre la puerta a toda una gama de nuevos materiales diseñados manualmente que puedan presentar nuevas propiedades no encontradas en ningún material hasta ahora.

Más información
http://news.stanford.edu/ (en inglés)
http://www.extremetech.com/ (en inglés)

Atrapando luz, mucha luz

Imagen:  Yanxia Cui
Metamateriales

Un nuevo diseño de un metamaterial por el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) podría ser mucho más eficiente capturando la luz solar que las celdas solares existentes.

David L. Chandler, MIT News Office. Original (en inglés)

Los metamateriales son una nueva clase de sustancias artificiales con propiedades diferentes a cualquiera encontrada en el mundo natural. Algunos han sido diseñados para actuar como mantos de invisibilidad; otros como superlentes, sistemas de antena o detectores altamente sensibles. Ahora, investigadores en el MIT y en otras partes han encontrado una manera de usar metamateriales para absorber un amplio rango de luz con eficiencia extremadamente alta, lo cual dicen que podría llevar a una nueva generación de celdas solares y sensores ópticos.

Nicholas X. Fang, un profesor de Diseño de Ingeniería en el Departamento de Ingeniería Mecánica del MIT, dice que la mayoría de materiales delgados usados para capturar completamente la luz están limitados a un rango muy angosto de longitudes de onda y ángulos de incidencia. El nuevo diseño usa un patrón de crestas en forma de cuña cuyos anchos están precisamente sintonizados a diferentes para alentar y capturar la luz en un gran rango de ancho de banda y ángulos de incidencia.

Estos materiales pueden ser extremadamente delgados, ahorrando peso y costo. Fang compara las estructuras al caracol del oído interno, que responde a diferentes frecuencias de sonido en diferentes puntos a través de su estructura que se va estrechando. “Nuestros oídos separan diferentes frecuencias y las recolecta a diferentes profundidades”, dijo; similarmente, las crestas del metamaterial recolectan fotones a diferentes profundidades.

La estructura actual del material es grabada alternando capas de metal y un material aislante llamado dieléctrico, cuya respuesta a la luz polarizada puede ser variada al cambiar un campo eléctrico aplicado al material. La creación de este nuevo material es descrita en una revista académica que será publicada en la futura edición del diario Nano Letters. Una versión preliminar de la revista académica de Fang – realizada junto con investigadores de la Univerzidad Zhejiang y la Universidad Taiyuan en China, y la Universidad de Illinois – está disponible en línea ahora.

King Hung Fung, un postdoctorado del MIT y co-autor de la revista académica en Nano Letters, dice, “Lo que hemos hecho es diseñar una estructura de diente de sierra con múltiples capas que puede absorber un amplio rango de frecuencias” con una eficiencia de más del 95%. Previamente, dicha eficiencia solo podía ser alcanzada con materiales sintonizados a una banda muy estrecha de longitudes de onda. “La absorción de alta eficiencia había sido alcanzada antes, pero este diseño tiene una ventana muy amplia” para colores de luz, dice Fung.

Los metamateriales han sido “un tema muy popular esta década”, dijo, “por que pueden ayudarnos a diseñar materiales funcionales que interactuan con luz de formas no convencionales”. Usando el metamaterial sintonizado, dice, su equipo fue capaz de alentar la luz a menos de una centésima de su velocidad normal en un vacio, haciendo mucho más fácil atraparla dentro del material. “Cuando algo va muy rápido, es difícil atraparlo”, dijo, “así que lo alentamos y es más fácil de absorber”.

El material puede ser fácilmente fabricado usando equipo que ya es estándar en la fabricación de celdas fotovoltaicas convencionales. Aunque el trabajo inicial estuvo basado en simulaciones de computadora, el equipo trabaja ahora en experimentos de laboratorio para confirmar sus hallazgos.

Además de celdas solares, el diseño puede ser usado para hacer detectores infrarrojos eficientes para un rango selecto de longitudes de onda. “Podemos mejorar selectivamente la interacción del material con la luz infrarroja a las langitudes de onda que queremos”, dijo Fung.

Fang dice que por su naturaleza, el material sería un emisor y absorbedor muy eficiente de fotones – así que adicionalmente al uso potencial en nuevos tipos de celdas solares o detectores infrarrojos, el material podría ser utilizado para aplicaciones emisoras de luz infrarroja, como dispositivos para generar electricidad a partir de calor. Además, los investigadores dicen que el principio podría ser escalado y ser usado para capturar o emitir radiación electromagnética a otras longitudes de onda, como microondas y frecuencias de terahertz. Incluso podría ser usado para producir luz visible con un costo de energía extremadamente bajo, creando un nuevo tipo de foco de alta eficiencia.

Richard Averitt, un profesor de física en la Universidad de Boston que no estuvo involucrado en esta investigación, llama a la estructura con forma de diente de sierra desarrollada por este equipo “un acercamiento único e impresionante hacia crear absorbedores de ancho de banda funcionales” que podrían tener aplicaciones en detección térmica y en recolección de luz para aplicaciones de energía. Advierte que se requiere de más trabajo para facilitar la fabricación e integración de los materiales, pero agrega, “Esta es una intrigante estructura que alenta ondas que deben inspirar nuevos desarrollos en este campo”.

El trabajo fue patrocinado por la Fundación Nacional de Ciencia de los Estados Unidos, y la Fundación Nacional de Ciencia de China y la Oficina Asiática de Investigación y Desarrollo Aeroespacial.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nanoárboles extraen hidrógeno del agua usando luz solar

Nano árboles

Ingenieros eléctricos de la Universidad de California, en San Diego, están construyendo un bosque de pequeños árboles de nanocables para capturar limpiamente la energía solar sin utilizar combustible fósil, recolectándola para generar combustible de hidrógeno. Reportándolo para el diario Nanoscale, el equipo dijo que nanocables, que están hecho de materiales abundantes en la naturaleza como silicio y óxido de zinc, también ofrecen una manera económica de proveer combustible de hidrógeno en una escala masiva.

Los árboles tienen una estructura vertical, esta estructura absorbe luz mientras que superficies planas simplemente la reflejan. Es similar a los células retinales fotoreceptoras en los ojos humanos. En imágenes de la tierra desde el espacio, la luz se refleja de superficies planas como los océanos o desiertos, mientras que bosques aparecen oscuros.

Este nuevo diseño utiliza energía de una manera limpia y sin productos secundarios. En comparación, el método convencional de producir hidrógeno está basado en elecetricidad producida por combustibles fósiles. El equipo investigador tiene un objetivo más grande todavía: alcanzar la fotosíntesis artificial.

Imagen: Wang Research Group, UC San Diego Jacobs School of Engineering.

Más información
http://ucsdnews.ucsd.edu/ (en inglés)

Entregando Ácido Ribonucleico con pequeñas esferas similares a esponjas

ARN pequeña esponja
Imagen: Hammond laboratory

Un nuevo método de interferencia de Ácido Ribonucleico (ARN, o RNA por sus siglas en inglés de RiboNucleic Acid) muestra promesa para tratar el cáncer, y otras enfermedades.

Anne Trafton, MIT News Office. Original (en inglés).

Durante la década pasada, científicos han estado siguiendo tratamientos de cáncer basados en interferencia de ARN – un fenómeto que ofrece una manera de apagar los genes con mal funcionamiento con pequeños trozos de ARN. Sin embargo, queda un enorme desafío: encontrar una manera de entregar eficientemente el ARN.

La mayoría del tiempo, ARN pequeño de interferencia (siRNA por sus siglas en inglés de small interfering RNA) – el tipo usado para interferencia ARN – es disuelto rápidamente dentro del cuerpo por enzimas que defienden contra infecciones por virus ARN.

“Ha sido una verdadera lucha el tratar de diseñar un sistema de entrega que nos permita administrar siRNA, especialmente si quieres apuntarle a partes específicas del cuerpo”, dijo Paula Hammond, Profesora de Ingeniería del David H. Koch en el MIT.

Hammond y sus colegas han llegado con un novedoso vehículo de entrega en el que el ARN es empacado dentro de microesferas tan densas que pueden resistir la degradación hasta alcanzar sus destinos. El nuevo sistema, descrito el 26 de febrero en el diario “Nature Materials”, derriba la expresión de genes específicos tan efectivamente como los métodos existentes de entrega, pero con una dosis mucho menor de partículas.

Dichas partículas podrían ofrecer una nueva manera de tratar no solo el cáncer, sino también cualquier otra enfermedad crónica causada por un “gen que no se comporta”, dijo Hammond, quien también es miembro del Instituto David H. Koch para Investigación de Cáncer Integrativa. “Interferencia de ARN tiene una enorme promesa para un gran número de enfermedades, una de las cuales es el cáncer, pero también enfermedades neurológicas y enfermedades inmunes”, dijo.

El autor líder de la revista académica es Jong Bum Lee, un antiguo postdoctorado en el laboratorio de Hammond. El postdoctorado Jinkee Hong, el doctor Daniel Bonner y el doctor Zhiyong Poon también son autores de la revista académica.

Interrupción genética

La interferencia de ARN es un proceso que ocurre naturalmente, descubierto en 1998, que permite a células ajustar precisamente su expresión genética. La información genética normalmente se carga del ADN en el núcleo a los ribosomas, estructuras celulares donde se forman las proteínas. siRNA se une al mensajero ARN que carga esta información genética, destruyendo instrucciones antes de que alcances al ribosoma.

Los científicos trabajan en muchas maneras para replicar artificialmente este proceso para apuntar a genes específicos, incluyendo empacar siRNA en nanopartículas hechas de lípidos (grasas) o materiales inorgánicos como el oro. Aunque muchas de éstas han mostrado algo de resultados, una desventaja es que es difícil cargar grandes cantidades de siRNA en estos cargueros, por que los cortos filamentos no se empacan ajustadamente.

Para superar esto, el equipo de Hammond decidió empacar el ARN como un largo filamento que se doblaría en una pequeña y compacta esfera. Los investigadores usaron un método para sintetizar ARN conocido como transcripción de círculo rotatorio para producir filamentos extremadamente largos de ARN hechos de una secuencia repetidora de 21 nucleoides. Esos segmentos están separados por una extensión más corta que es reconocida por la enzima Dicer, que corta el ARN cuando encuentra esa secuencia.

Conforme el filamento de ARN es sintetizado, se dobla en hojas que entonces se auto-ensamblan en una esfera muy densa similar a esponja. Hasta medio millón de copias de la misma secuencia de ARN pueden ser empacadas en una esfera con un diámetro de solo dos micrones. Una vez que la esferas se forman, los investigadores las empacan en una capa de polímero cargado positivamente, que induce a las esperas a empacarse aún más apretadas (hasta un diámetro de 200 nanómetros) y también las ayuda a entrar en las células.

Después de que las esferas entran a una célula, la enzima Dicer corta el ARN en lugares específicos, liberando las secuencias siRNA de 21 nucleótidos.

Peixuan Guo, director del Centro de Desarrollo de Nanomedicina NIH en la Universidad de Kentucky, dijo que el aspecto más emocionante del trabajo es el desarrollo de un método de auto-ensamblado para partículas de ARN. Guo, quien no fue parte del equipo de investigación, agrega que las partículas podrían ser más efectivas en entrar en las células si fueran encogidas a escalas aún más pequeñas, cercanas a los 50 nanómetros.

Apuntando a tumores

En la revista académica de “Nature Materials”, los investigadores probaron sus esferas programándolas para liberar secuencias de ARN que apagaran un gen que provoca que las células de tumores brillen en ratones. Encontraron que podían alcanzar el mismo nivel de derribo de sistemas de entrega de nanopartículas convencionales, pero utilizando hasta mil veces menos partículas.

Las microesponjas se acumulan en los sitios de tumores a través de un fenómeno comúnmente utilizado para entregar nanopartículas: Los vasos sanguíneos que rodean tumores tienen “filtraciones,” lo que significa que tienen pequeños poros a través de los cuales muy pequeñas partículas pueden colarse.

En estudios futuros, los investigadores planean diseñar microesferas recubiertas con polímeros que específicamente apunten a células de tumores u otras células de enfermedades. También trabajan en esferas que carguen ADN, para un potencial uso en terapia genética.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Un transistor perfecto de solo un átomo fue creado

Transistor de un átomo

Físicos de UNSW (Universidad de Nuevo South Wales en Australia) crearon un transistor funcional de un solo átomo colocado con precisión en un cristal de silicio. Utiliza su componente activo, un átomo de fósforo individual entre electrodos a escala atómica y compuertas de control electrostático.

Hasta el momento, los transistores atómicos habían sido realizados por suerte: los investigadores tenían que buscar en muchos dispositivos para aislar uno que funcionara así. Pero este dispositivo fue creado con una precisión nunca antes alcanzada. Es un dispositivo perfecto, y es el transistor más pequeño que es posible hacer, ya no puede reducirse más que éste.

Se predecía que los transistores alcanzarían esta escala para el año 2020, siguiendo la tendencia actual de reducción de los componentes y obedeciendo la ley de Moore, la cual dice que el número de componentes en circuitos integrados se duplica cada 18 meses. Pero éste por lo visto se adelantó 8 años a su tiempo.

El pequeño dispositivo fue descrito en una revista académica publicada en el diario Nature Nanotechnology.

Más información
http://newsroom.unsw.edu.au/ (en inglés)