Una nueva dimensión para la energía solar

Páneles solares
Imagen: Allegra Boverman

Diseños inovativos tridimensionales de un equipo del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) pueden más que doblar la energía solar generada de un área dada.

David L. Chandler, MIT News Office. Original (en inglés).

Investigación intensiva alrededor del mundo se ha enfocado en mejorar el rendimiento de las celdas solares fotovoltaicas y reducir su costo. Pero muy poca atención ha sido prestada a las mejores maneras de acomodar esas celdas, que típicamente se colocan planas en un techo u otra superficie, o a veces se unen a estructuras motorizadas que mantienen las celdas apuntando hacia el sol según cruza el cielo.

Ahora, un equipo de investigadores del MIT ha encontrado un acercamiento muy diferente: construir cubos o torres que extienden las celdas solares hacia arriba en configuraciones tridimensionales. Increíblemente, los resultados de las estructuras que han probado muestran una salida de energía que va desde el doble hasta más de 20 veces aquella de paneles planos fijos con la misma área de la base.

Los mayores incrementos de energía fueron vistos en las situaciones donde las mejoras eran más necesitadas: en lugares lejos del ecuador, en los meses de invierno y en días nublados. Los nuevos hallazgos, basados en modelado con computadora y pruebas al aire libre de módulos reales, han sido publicados en el diario Energy and Environmental Science (Ciencia de Energía y Ambiental).

“Pienso que este concepto podría convertirse en una parte importante del futuro de la fotovoltaica”, dice el autor principal de la revista académica, Jeffrey Grossman, el profesor asociado de Desarrollo de Carreras de Ingeniería de Energía en el MIT.

El equipo del MIT inicialmente usó un algoritmo computacional para explorar una enorme variedad de configuraciones posibles, y desarrolló software analítico que puede probar cualquier configuración dada bajo un rango completo de latitudes, temporadas y clima. Entonces, para confirmar las predicciones de su modelo, construyeron y probaron tres diferentes acomodos de celdas solares en el techo de un edificio de laboratorios del MIT por varias semanas.

Mientras que el costo de una cantidad de energía dada generada por dichos modelos tridimensionales excede en los paneles planos ordinarios, el costo es parcialmente balanceado por una salida de energía mucho más alta de un área dada, así como una salida de energía mucho más uniforme en el curso del día, en las temporadas del año, y en presencia de bloqueo de nubes y sombras. Estas mejoras vuelven la salida de energía más predecible y uniforme, lo que podría hacer la integración con la red de energía más fácil que los sistemas convencionales, dicen los autores.

La razón física baja para las mejoras en la salida de energía – y para la salida más uniforme en el tiempo – es que las superficies verticales de las estructuras tridimensionales pueden recolectar mucha más luz del sol por las mañanas, tardes e inviernos, cuando el sol es más cercano al horizonte, dice el coautor Marco Bernardi, un estudiante graduado en el Departamento de Ciencia de Materiales e Ingeniería (DMSE) del MIT.

El tiempo es perfecto para dicha inovación, agrega Grossman, por que las celdas solares se han vuelto más económicas que las estructuras que las soportan, el cableado y la instalación. Conforme el costo de las mismas celdas continua declinando más rápidamente que estos otros costos, dicen, las ventajas de los sistemas tridimensionales crecerán de la misma manera.

“Incluso hace 10 años, esta idea no habría sido económicamente justificable por que los módulos costarían demasiado,” dice Grossman. Pero ahora, agrega, “el costo de las celdas de silicio es una fracción del costo total, una tendencia que continuará bajando en el futuro cercano”. Actualmente, hasta 65 por ciento del costo de la energía fotovoltaica (PV) está asociada con la instalación, permisos para uso del suelo y otros componentes además de las celdas mismas.

Aunque el modelado por computadora de Grossman y sus colegas mostró que la mayor ventaja sería obtenida de formas complejas – como un cubo donde cada cara está curveada hacia adentro – estás serían difíciles de construir, dice el coautor Nicola Ferralis, un científico investigador en DMSE. Los algoritmos también pueden ser usados para optimizar y simplificar formas con poca pérdida de energía. Resulta ser que la diferencia de salida de energía entre dichas formas optimizadas y un cubo simple es solo de 10 a 15 por ciento – una diferencia que es eclipsada por la gran mejora de rendimiento de las formas tridimensionales en general, dice. El equipo analizó las simples formas cúbicas y las formas más complejas similares a un acordeón en las pruebas experimentales en su tejado.

Al principio, los investigadores estuvieron afligidos cuando pasaron casi dos semanas sin un día claro y soleado para sus pruebas. Pero entonces, viendo los datos, se dieron cuenta de que habían aprendido importantes lecciones de los días nublados, que mostraron una mejora enorme en la salida de energía sobre los paneles planos convencionales.

Para la torre similar a un acordeón – la estructura más amplia que el equipo probó – la idea era simular una torre que “pudieras enviar plana, y entonces pudiera desdoblarse en el lugar”, dice Grossman. Dicha torre podría ser instalada en un estacionamiento para proveer una estación de recarga de vehículos eléctricos, dijo.

Hasta ahora, el equipo ha modelado módulos individuales tridimensionales. Un próximo paso es estudiar una colección de dichas torres, tomando en cuenta las sombras que una torre podría crearle a las otras a diferentes horas del día. En general, formas tridimensionales podrían tener una gran ventaja en cualquier lugar donde el espacio es limitado, como instalaciones de techos planos o en entornos urbanos, dicen. Dichas formas también podrían ser usadas en aplicaciones de gran escala, como granjas solares, una vez que los efectos entre las torres sean cuidadosamente minimizados.

Algunos otros esfuerzos – incluyendo incluso un proyecto de una feria de ciencia de escuela media el año pasado – han intentando acomodos tridimensionales de celdas solares. Pero, dice Grossman, “nuestro estudio es diferente en naturaleza, ya que es el primer acercamiento al problema con un análisis sistemático y predictivo”.

David Gracias, un profesor asociado de ingeniería química y biomolecular en la Universidad John Hopkins quien no estuvo involucrado en esta investigación, dice que Grossman y su equipo “han demostrado evidencia teórica y una prueba de concepto de que elementos fotovoltaicos tridimensionales podrían proveer beneficios significativos en términos de capturar la luz en diferentes ángulos. El desafío, sin embargo, es el producir masivamente estos elementos de una manera efectiva en cuanto a costos”.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nanoárboles extraen hidrógeno del agua usando luz solar

Nano árboles

Ingenieros eléctricos de la Universidad de California, en San Diego, están construyendo un bosque de pequeños árboles de nanocables para capturar limpiamente la energía solar sin utilizar combustible fósil, recolectándola para generar combustible de hidrógeno. Reportándolo para el diario Nanoscale, el equipo dijo que nanocables, que están hecho de materiales abundantes en la naturaleza como silicio y óxido de zinc, también ofrecen una manera económica de proveer combustible de hidrógeno en una escala masiva.

Los árboles tienen una estructura vertical, esta estructura absorbe luz mientras que superficies planas simplemente la reflejan. Es similar a los células retinales fotoreceptoras en los ojos humanos. En imágenes de la tierra desde el espacio, la luz se refleja de superficies planas como los océanos o desiertos, mientras que bosques aparecen oscuros.

Este nuevo diseño utiliza energía de una manera limpia y sin productos secundarios. En comparación, el método convencional de producir hidrógeno está basado en elecetricidad producida por combustibles fósiles. El equipo investigador tiene un objetivo más grande todavía: alcanzar la fotosíntesis artificial.

Imagen: Wang Research Group, UC San Diego Jacobs School of Engineering.

Más información
http://ucsdnews.ucsd.edu/ (en inglés)

Baterías líquidas podrían ayudar a la adopción de energía renovable

Batería líquida
Imagen: Patrick Gillooly

Un equipo del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) progresa hacia la meta de baterías económicas a escala de redes eléctricas que podrían volver viables las fuentes de energía renovable intermitentes.

Por David L. Chandler, MIT News Office. Original (en inglés).

El más grande inconveniente de muchas fuentes de energía limpia y renovable es su intermitencia: El viento no siempre sopla, el sol no siempre brilla, y así el poder que estos producen podría no estar disponible en momentos cuando es necesario. Una gran meta de la investigación de energía ha sido encontrar maneras de ayudar a suavizar estas fuentes erráticas.

Nuevos resultados de un programa de investigación en curso en el MIT, reportado en el Diario de la Sociedad Química Americana, muestra una prometedora tecnología que podría proveer esa manera de nivelar la carga que por tanto tiempo ha sido buscada – a un costo mucho menor y con una mayor duración que los métodos previos. El sistema utiliza baterías de alta temperatura cuyos componentes líquidos, como novedosos cócteles, se ajustan naturalmente en distintas capas debido a sus distintas densidades.

Los tres materiales fundidos forman los polos positivo y negativo de la batería, así como una capa de electrolito – un material que partículas cargadas atraviesan según la batería sea cargada o descargada – en medio. Las tres capas están compuestas de materiales que son abundantes y baratos, explica Donald Sadoway, el profesor de Química de Materiales del MIT y autor principal de la nueva revista académica.

“Exploramos muchos materiales”, dijo Sadoway, buscando la combinación correcta de propiedades eléctricas, la abundante disponibilidad y diferencias en la densidad que permitieran que las capas se mantuvieran separadas. Su equipo encontró un número de prometedores candidatos, dijo, y está publicando su análisis detallado de una de dichas combinaciones: magnesio para el electrodo negativo (capa superior), una mezcla de sales que contiene cloruro de magnesio para el electrolito (capa media) y antimonio para el electrodo positivo (capa inferior). El sistema operaría a una temperatura de 700 grados Celsius, o a 1,292 grados Fahrenheit.

En esta formulación, explica Sadoway, la batería entrega corriente conforme los átomos de magnesio pierden dos electrones, convirtiéndose en iones de magnesio que migran a través del electrolito hacia el otro electrodo. Ahí, re-adquieren dos electrones y se revierten a átomos ordinarios de magnesio, que forman una aleación con el antimonio. Para recargarla, la batería es conectada a una fuente de electricidad, que saca al magnesio de la aleación y a través del electrolito, donde se vuelve a unir al electrodo negativo.

La inspiración para el concepto vino del trabajo previo de Sadoway sobre el proceso electroquímico de la separación del aluminio de su óxido alúmina, que es conducido en celdas electroquímicas que operan a temperaturas altas similares. Muchas décadas de operación han probado que dichos sistemas operan confiablemente durante largos períodos de tiempo a una escala industrial, produciendo metal a un muy bajo costo. En efecto, dice, que lo que encontró fue “una manera de invertir el proceso”.

Durante los últimos tres años, Sadoway y su equipo – incluyendo el Centro Afiliado de Investigación sobre el Procesado de Materiales del MIT David Bradwell, el autor líder de la nueva revista académica – han escalado gradualmente sus experimentos. Sus pruebas iniciales usaron baterías del tamaño de un vaso de tragos cortos (shots); entonces procedieron a celdas del tamaño de discos de hockey, 7.6 centímetros de diámetro y 25 milímetros de grosor. Ahora, han comenzado pruebas en una versión de 15.2 centímetros, con 200 veces la capacidad de la versión inicial.

Las compañías de energía eléctrica podrían finalmente ser los usuarios de esta tecnología, dice Sadoway, “no importa de que estén hechas, o cual sea el tamaño. La única pregunta es cual es el costo de almacenaje” para una determinada cantidad de energía. “Puedo construir una hermosa batería al precio de la NASA”, dijo – pero cuando el costo es la motivación principal, “eso cambia la búsqueda” para el mejor material. Solo basado en la rareza y en el costo de algunos elementos, “largas secciones de la tabla periódica están fuera de los límites”.

El equipo continua su trabajo en optimizar todos los aspectos del sistema, incluyendo los contenedores utilizados para sostener los materiales fundidos y las maneras de aislarlos y calentarlos, así como maneras de reducir la temperatura de operación para ayudar a cortar los costos de energía. “Hemos descubierto maneras de reducir la temperatura operacional sin sacrificar rendimiento eléctrico o costo”, dijo Sadoway.

Mientras que otros han investigados sistemas de baterías líquidas similares, Sadoway dice que él y su equipo son los primeros en producir un sistema de almacenamiento funcional y práctico utilizando esta aproximación. Le atribuye parcialmente su éxito en esto a la mezcla única de experiencia en un lugar como MIT: “La gente en la industria de las baterías no sabe nada sobre la separación electrolítica en sales derretidas. La mayoría piensa que la operación a altas temperaturas sería ineficiente”.

Robert Huggins, un profesor emérito de ciencia de materiales e ingeniería en la Universidad de Stanford, dijo, “Para cada aproximación radicalmente diferente, hay un número de nuevos problemas prácticos a resolver para que se vuelva una alternativa práctica a usarse en el almacenamiento de energía a gran escala, [incluyendo] evaporación electrolítica, y corrosión y oxidación de componentes, así como la cuestión siempre presente del costo”. Sin embargo, dijo, este es “un acercamiento muy innovativo al almacenamiento electroquímico de energía, y está siendo explorado con un alto grado de sofisticación”.

Sadoway, junto con Bradwell, ha fundado una compañía para llevar esta tecnología a la comercialización, y estar en un año sabático trabajando con la compañía, Liquid Metal Battery Corp. (Corporación de Baterías de Metal Líquido). “Si esta tecnología tiene éxito”, dijo, “podría cambiar el juego” para la energía renovable.

El trabajo ha sido patrocinado por el Centro Deshpande de Innovación Tecnológica en el MIT, la Fundación de la Familia Chesonis, el programa ARPA-E del Departamento de Energía de los Estados Unidos, y Total, S.A.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

El mito de las energías renovables.

Energía eólica
© inversor.name

Se habla acerca de lo que las energías renovables pueden hacer o no hacer. El sol y el viento son quizás prácticamente inagotables, pero las energías “renovables” no lo son. Energía solar, eólica y geotérmica, no son fundamentalmente diferentes de otras tecnologías energéticas que consumen los recursos naturales agotables.

De alguna manera, la gente en todo el espectro político-medioambientalistas parecen haber llegado a un acuerdo tácito, un acuerdo casi unánime sobre lo que significa renovables: Es una categoría que incluye la energía solar, eólica, hidráulica, biomasa y energía geotérmica. Como el Departamento de Energía de los EE.UU. explica a los niños: “La energía renovable proviene de cosas que no se acabarán: viento, agua, luz solar, las plantas, y más. Estas son cosas que se pueden reutilizar una y otra vez, no renovables: la energía proviene de las cosas que se agotarán un día como petróleo, carbón, gas natural y uranio”.

Energías renovables suena mucho más natural y creíble que una máquina de movimiento perpetuo, pero hay un gran problema: a menos que se esté planeando vivir sin electricidad y sin transporte motorizado, se necesita algo más que el viento, el agua, la luz del sol, y las plantas de energía. Se necesitan las materias primas, bienes raíces y otras cosas que se agotarán algún día. Así como cosas que tienen que ser extraídas, taladradas, transportadas, y arrasadas, no simplemente de cosecha o de cría. Se necesitan los recursos no renovables.

Ahora hay 7 mil millones de humanos en este planeta. Hasta que encontremos una manera de reducir nuestro consumo de energía y de compartir los recursos finitos de la tierra más equitativamente entre naciones y generaciones, “renovable” podría solo ser llamada “miscelánea”.

Mas información:
http://thebulletin.org/ (en inglés)

Árboles artificiales generadores de energía eléctrica

Árboles nanotecnológicos
Árboles nanotecnológicos

La empresa Solar Botanic, ha creado árboles que estéticamente son copias de los naturales, su diferencia está en la fabricación de sus estructuras que están hechas con nanotecnología, cuentan con un sistema que les permite captar la energía solar y eólica, a través de células fotovoltaicas, termovoltaicas y por el movimiento de las hojas cuando éstas son movidas por el viento.

Gracias a la combinación de los dos tipos de células, que convierten la radiación térmica en energía eléctrica, aún pueden seguir generándola horas después de la puesta de Sol. Según Solar Botanic, un árbol (no especifican tamaño) de hojas anchas parecido al Roble o Arce podría generar 3,500 Kwh y 7,000 Kwh al año. Además estos árboles proporcionarían sombra, servirían como barrera acústica y visualmente ofrecen una alternativa para la decoración.

Fuente:
http://nomadaq.blogspot.com/