Nueva herramienta de la NASA permite detectar rápidamente la deforestación

NASA

El sistema de alerta de alteración global de bosques (Glof-DAS) proporciona datos de los cambios que sufren los bosques a nivel mundial sobre una base trimestral.

Los mapas confiables de los cambios en la cobertura forestal global frecuentemente están atrasados por años. Por lo tanto hay una necesidad de desarrollar técnicas de control y verificación de los cambios de la cobertura terrestre y las alteraciones forestales de manera oportuna, que sean de bajo costo y precisas.

Este sistema de alerta se basa en la nueva herramienta “Indicador trimestral de cambio en la cobertura” (QUICC), desarrollada en el Centro de Investigación Ames de la NASA por el equipo de modelado de ecosistemas de CASA. El QUICC compara imágenes de MODIS del índice de vegetación global en el mismo período de tiempo cada año, en años consecutivos.

De esta manera Glof-DAS podría ayudar a los usuarios a detectar la deforestación poco después de que se produce, ofreciendo la posibilidad de tomar medidas para investigar el claro antes de que se expanda.

Más información
http://rainforests.mongabay.com/ (en inglés)
http://geo.arc.nasa.gov/ (en inglés)

Asombroso video de la Tierra

Tierra máxima resolución

Este video es un timelapse en alta resolución del hemisferio norte de nuestro planeta y fue realizado con las imágenes obtenidas cada 30 minutos por el satélite ruso de meteorología Elektro-L (que se encuentra orbitando a casi 40 mil kilómetros sobre el ecuador), en un período de tiempo comprendido del 14 al 20 de mayo.

Puedes ver la imagen en su resolución completa haciendo click aquí (Advertencia, la imagen es muy grande, pesa 105 MegaBytes). También existe una versión con zoom haciendo click aquí.

Referencia
http://www.nistido.com/

Estudio de bosques de Siberia desde laboratorio aéreo

Laboratorio aéreo
Imagen: RIA Novosti

Un laboratorio ruso-francés instalado en un avión TU-134, está destinado para que científicos rusos y franceses realicen mediciones de la concentración de diversos gases (dióxido de carbono, ozono, metano, vapor de agua, partícula de aerosol) y hollín, en el territorio de Siberia Occidental, para poder evaluar la capacidad que tienen los bosques siberianos para afrontar el calentamiento global. Esta es la primera vez que se realizará desde el aire un análisis preciso de la atmósfera y del balance térmico de esta región.

El objetivo de esta investigación es entender como la taiga está cumpliendo su función de “pulmones del planeta”, como lo hace también la masa forestal del Amazonas.

Boris Belan, quien es el subdirector del Instituto de óptica de la atmósfera de Tomsk, apunta:
“Hasta el 2005 podíamos afirmar con seguridad que los bosques siberianos, cumplían esta tarea. Pero desde el 2005 al 2008 se constató la tendencia de que había comenzado a crecer la concentración de gas carbónico cerca del suelo, es decir, da la impresión de que la vegetación no absorbe las emanaciones adicionales de gas carbónico”.

Para determinar si este proceso es periódico y reversible, será necesario realizar mediciones y observaciones durante uno o dos años. Además del laboratorio aéreo, se recurrirá a las estaciones terrestres de control, para registrar los flujos crecientes o decrecientes de la radiación, el contenido de vapor de agua y de ozono de la atmósfera. Las estaciones TOR estudiarán las composiciones de gases y de aerosoles de la atmósfera. Además se tomarán en cuenta los datos de los sistemas satelitales de los Estados Unidos, de observación del medio ambiente.

Referencia
http://spanish.ruvr.ru/

Nuevo método para prevenir obstrucciones submarinas de hielo

Hidrato de metano
Imagen: Wuse 1007 / wikipedia

Revestimientos superficiales desarrollados por investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) podrían inhibir la acumulación de hidratos de metano que pueden bloquear pozos profundos de petróleo y gas.

David L. Chandler, MIT News Office. Original (en inglés).

Durante el derrame petrolero masivo del pozo roto Deepwater Horizon en el 2010, parecía al principio que podría haber un arreglo rápido: un domo de contención que se bajara a la tubería rota para capturar el flujo para que pudiera ser bombeado a la superficie y eliminado apropiadamente. Pero ese intento falló rápidamente, porque el domo casi instantáneamente se obstruyó con hidrato de metano congelado.

Los hidratos de metano, que se congelan al contacto con agua fría en lo profundo del océano, son un problema crónico para los pozos de petróleo y gas profundos. Algunas veces estos hidratos congelados se forman dentro de la cubierta del pozo, donde pueden restringir e incluso bloquear el flujo, con un costo enorme para los operadores del pozo.

Ahora investigadores del MIT, liderados por el profesor asociado de Ingeniería Mecánica Kripa Varanasi, dicen que han encontrado una solución, descrita recientemente en el diario Physical Chemistry Chemical Physics. El autor líder de la revista académica es J. David Smith, un estudiante graduado de ingeniería mecánica.

El océano profundo se está convirtiendo en “una fuente clave” de nuevos pozos de petróleo y gas, dice Varanasi, conforme las demandas de energía del mundo continúan incrementándose rápidamente. Pero uno de los problemas cruciales en hacer viables estos pozos profundos respecto a la “garantía de flujo”: encontrar maneras de evitar la acumulación de hidratos de metano. Presentemente, esto se hace principalmente mediante el uso de sistemas de calefacción caros o aditivos químicos.

“Las industrias de petróleo y gas actualmente gastan al menos $200 millones de dólares al año solo en químicos” para prevenir dichas acumulaciones, dice Varanasi; fuentes de la industria dicen que la cifra total por la prevención y la producción perdida debido a hidratos podría estar en los miles de millones de dólares. El nuevo método de su equipo usaría en su lugar recubrimientos pasivos en los interiores de las tuberías que están diseñados para prevenir que los hidratos se adhieran.

Estos hidratos forman una estructura cristalina similar a una caja, llamada clatrato, en la que moléculas de metano son atrapadas en retículos de moléculas de agua. Aunque se ven como hielo ordinario, los hidratos de metano se forman solo bajo el agua a alta presión: en las aguas profundas o debajo del lecho oceánico, dice Smith. Según algunos estimados, la cantidad total de metano (el ingrediente principal del gas natural) contenido en los clatratos del lecho marino mundial exceden por mucho la cantidad conocida de reservas de todos los otros combustibles fósiles combinados.

Dentro de las tuberías que cargan el aceite o el gas de las profundidades, los hidratos de metano pueden adherirse a las paredes internas – como la placa que se acumula dentro de las arterias del cuerpo – y, en algunos casos, eventualmente bloquear el flujo completamente. Los bloqueos pueden suceder sin advertencia, y en casos severos requieren que la sección bloqueada de la tubería sea cortada y reemplazada, resultando en largos apagones de producción. Los esfuerzos de prevención presentes incluyen calefacción clara o aislamiento de las tuberías o aditivos como metanol introducidos en el flujo de gas o petróleo. “El metanol en un buen inhibidor”, dice Varanasi, pero es “muy agresivo ambientalmente” si escapa.

El grupo de investigación de Varanasi comenzó a analizar el problema antes del derrame del Deepwater Horizon en el Golfo de México. El grupo se ha enfocado por mucho tiempo en maneras de prevenir la acumulación de hielo ordinario – como en las alas de un avión – y en la creación de superficies hidrofóbicas, que previenen que las gotas de agua se adhieran a una superficie. Entonces Varanasi decidió explorar el potencial para crear lo que el llama superficies “hidrato-fóbicas” para prevenir que los hidratos se adhieran duramente a las paredes de las tuberías. Debido a que los mismos hidratos de metano son peligrosos, los investigadores trabajaron casi exclusivamente con un modelo de sistema de hidrato clatrato que exhibe propiedades similares.

El estudio produjo varios resultados significativos: Primero, utilizando un recubrimiento simple, Varanasi y sus colegas fueron capaces de reducir la adhesión de hidratos en la tubería a un cuarto de la cantidad en superficies no tratadas. Segundo, el sistema de pruebas que diseñaron provee una manera siemple y barata de buscar inhibidores aún más efectivos. Finalmente, los investigadores también encontraron una fuerte correlación entre las propiedades “hidrato-fóbicas” de una superficie y su humectabilidad – una medición de qué tan bien el líquido se esparce en la superficie.

Los encuentros básicos también aplican a otros adhesivos sólidos, dice Varanasi – por ejemplo, soldadura adhiriéndose a un circuito, o depósitos de calcita dentro de líneas de plomería – así que los mismos métodos de prueba pueden ser usados para analizar recubrimientos para una amplia variedad de procesos comerciales e industriales.

Richard Camilli, un científico asociado en Física Oceánica Aplicada e Ingeniería en la Institución Oceanográfica Woods Hole quien no estuvo involucrado en este estudio, dice, “La industria de la energía ha estado luchando con problemas de seguridad y garantía de flujo relacionados con la formación de hidratos y bloqueos por casi un siglo”. Añade que el problema se está volviendo más significativo mientras que el taladrado progresa a aguas aún más profundas y dice que el trabajo del equipo de Varanasi “es un gran paso hacia encontrar formas más amigables ambientalmente para prevenir la obstrucción de hidrato en las tuberías”.

El equipo investigador incluyó al postdoctorado del MIT Adam Meuler y al estudiante Harrison Bralower; al profesor de Ingeniería Mecánica Gareth McKinley; al profesor de Ingeniería Química Robert Cohen; y a Silva Subramanian y Rama Venkatesan, dos investigadores de la Compañía Tecnológica Chevron Energy. El trabajo fue patrocinado por el programa Iniciativa de Energía Chevron del MIT y por el consejo Doherty en Utilización Oceánica de Varanasi.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Gas de invernadero puede encontrar un hogar bajo tierra

Gas invernadero
Image: Michael Szulczewski, of the Juanes Research Group, MIT

Un nuevo análisis del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) muestra que hay suficiente espacio para guardar seguramente al menos un siglo de emisiones de combustibles fósiles de los Estados Unidos

David L. Chandler, MIT News Office. Original (en inglés).

Un nuevo estudio por investigadores del MIT muestra que hay la suficiente capacidad en acuíferos salinos profundos en los Estados Unidos para guardar al menos un siglo de emisiones de dióxido de carbono de las plantas eléctricas que queman carbón. Aunque quedan preguntas sobre la economía de sistemas para capturar y guardar dichos gases, este estudio se enfoca en un problema principal que ha dejado en la sombra dichas propuestas.

El análisis del equipo del MIT – liderado por Ruben Juanes, un profesor asociado en Estudios Energéticos en el Departamento de Ingeniería Civil y del Entorno, y parte del trabajo de tesis doctoral de los estudiantes graduados Christopher MacMinn y Michael Szulczewski – será publicado esta semana en el Proceedings of the National Academy of Sciences (PNAS).

Las plantas eléctricas que queman carbón generan alrededor del 40% de las emisiones de carbono en el mundo, entonces el cambio climático “no será abordado a menos que se lidie con las emisiones de dióxido de carbono de plantas de carbón”, dice Juanes. “Debemos hacer muchas cosas diferentes” como desarrollar alternativas nuevas y más limpias, dice, “pero una cosa que no va a irse es el carbón”, por que es una fuente de poder barata y ampliamente disponible.

Esfuerzos para reducir los gases de invernadero se han enfocado principalmente en la búsqueda de fuentes de energía prácticas y económicas, como el viento o energía solar. Pero las emisiones humanas son ahora tan vastas que muchos analistas piensan que es improbable que estas tecnologías solas puedan resolver el problema. Algunos han propuesto sistemas para capturar emisiones – principalmente dióxido de carbono del quemado de combustibles fósiles – entonces comprimirlas y guardar el desecho en formaciones geológicas profundas. Este acercamiento es conocido como captura y almacenaje de carbón, o CSS (carbon capture and storage).

Uno de los lugares más prometedores para almacenar el gas es en los profundos acuíferos salinos: aquellos más de una milla debajo de la superficie, muy por debajo de las fuentes de agua dulce usadas para consumo humano y agricultura. Pero los estimados de la capacidad de dichas formaciones en los Estados Unidos han variado desde guardar solo algunos años de emisiones de plantas de carbón hasta muchos miles de años de emisiones.

La razón para la enorme disparidad en las estimaciones es por dos causas. Primera, por que los acuíferos salinos profundos no tienen valor comercial, ha habido poca exploración para determinar su extensión. Segunda, la dinámica de fluidos de cómo el dióxido de carbono concentrado y licuado se esparciría a través de dichas formaciones es muy compleja y difícil de modelar. La mayoría de los análisis simplemente estimaron el volumen promedio de las formaciones, sin considerar la dinámica de cómo el CO2 las infiltraría.

El equipo del MIT modeló cómo el dióxido de carbono se filtraría a través de la roca, tomando en cuenta no solo la capacidad final de las formaciones sino la tasa de inyección que podría sustentarse en el tiempo. “La clave es capturar las físicas esenciales del problema”, dice Szulczewski, “pero simplificándolo lo suficiente para poder aplicarlo al país entero”. Eso significó ver los detalles de los mecanismos de captura en la roca porosa a la escala de los micrones, entonces aplicando ese entendimiento a formaciones en un espacio de cientos de millas.

“Comenzamos con el grupo complicado completo de ecuaciones para el flujo fluídico, y entonces lo simplificamos”, dice MacMinn. Otros estimados han tendido a sobresimplificar el problema, “perdiendo algunas de las sutilezas de la física”, dice. Mientras que este análisis se enfocó en los Estados Unidos, MacMinn dice que capacidades de almacenamiento similares seguramente existen alrededor del mundo.

Howard Herzog, un investigador ingeniero principal con la Iniciativa de Energía del MIT y co-autor de la revista académica del PNAS, dice que este estudio “demuestra que la tasa de inyección de CO2 en una reserva es un parámetro crítico al hacer estimados de almacenamiento”.

Cuando está licuado el dióxido de carbono es disuelto en el agua salada, el fluido resultante es más denso que cualquiera de los componentes, así que se hunde naturalmente. Es un proceso lento, pero “una vez que el dióxido de carbono está disuelto, has ganado el juego”, dice Juanes, por que la mezcla densa y pesado es casi seguro que nunca volverá a escapar de vuelta a la atmósfera.

Mientras que este estudio no tomó en consideración el costo de los sistemas CCS, muchos analistas han concluido que podrían agregar de un 15 a un 30 por ciento al costo de la electricidad generada con carbón, y no sería viable a menos que un impuesto al carbono o un límite a las emisiones de carbono fuera implementado.

Franklin Orr Jr., un profesor de ciencias de la tierra y director del Instituto Precourt para la Energía en la Universidad de Stanford, dice, “La contribución importante de este trabajo es que agrega consideración de la tasa de inyección de CO2, por que puede ser restringido por el aumento de la presión en los acuíferos salinos profundos. Esta revista académica provee evidencia que aún cuando esas restricciones son consideradas hay mucha capacidad de almacenamiento. Esa es una contribución muy útil”.

James J. Dooley, un científico principal en el Laboratorio Nacional del Noroeste del Pacífico quien no estuvo involucrado en el estudio del MIT, lo llamó “un muy buen análisis que demuestra que dadas las condiciones regulatorias y económicas apropiadas, las tecnologías de captura y almacenamiento del dióxido de carbono pueden ser la base de reducciones de gases de invernadero profundas y sostenidas en los Estados Unidos y alrededor del mundo”.

Mientras que quedan incertidumbres, “Realmente pienso que CSS tiene un papel que jugar”, dice Juanes. “No es la última salvación, es un puente, pero podría ser esencial por que realmente puede afrontar las emisiones de carbón y gas natural”.

La investigación fue apoyada por fondos del Departamento de Energía de los Estados Unidos, la Iniciativa de Energía del MIT, el Fondo de Investigación Reed, la Sociedad de Becarios de la Familia Martin para la Sustentabilidad y la Cátedra de Estudios de Energía ARCO.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Previniendo contaminación en reciclaje

Reciclaje
Imagen: Michelle Arseneault/flickr

Un nuevo estudio examina maneras de prevenir la acumulación de impurezas en el reciclaje de aluminio.

David L. Chandler, MIT News Office. Original (en inglés)

El Aluminio ha sido por mucho tiempo el ejemplo del reciclaje. Alrededor de la mitad de todo el aluminio utilizado en los Estados Unidos ahora es reciclado, y este reciclaje tiene beneficios claros y dramáticos: Libra por libra, toma de nueve a 18 veces más energía producir aluminio de materiales en bruto que de material reciclado.

Por que ahorra tanta energía – y por lo tanto dinero – el reciclaje de aluminio continua expandiéndose. Pero un nuevo análisis del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) encuentra que esta expansión podría encontrarse con problemas a menos que se tomen medidas para reducir las impurezas que pueden acumularse conforme el aluminio es reciclado una y otra vez: todo desde la pintura y las etiquetas en las latas a otros metales que accidentalmente son mezclados. Dichas impurezas continuarán acumulándose, dicen los investigadores del MIT, pero pueden ser manejadas para mantener la acumulación a niveles aceptables y se toman algunos pasos extras mientras los bienes reciclados son organizados, o durante el proceso de fundido.

Los investigadores del MIT Randolph Kirchain y Elsa Olivetti, del Laboratorio de Sistemas Materiales, junto con Gabrielle Gaustad del Instituto de Tecnología Rochester, publicaron sus hallazgos en el diario Resources, Conservation and Recycling (Recursos, Conservación y Reciclaje).

Un productor mayor de aluminio solicitó este análisis para ayudarlo a decidir si instalar sistemas mejorados de separación para prepararse para impurezas que podrían volverse más serias con el paso del tiempo. “No podían justificar esto en su negocio basado en lo que está sucediendo hoy”, dijo Kirchain – pero los análisis de su equipo mostraron que tendría sentido instalar dichos sistemas en anticipación de cambios futuros.

Por ahora, el problema sigue siendo manejable, dice Kirchain, por que los diferentes usos requieren de diferentes grados de aluminio. Por ejemplo, bloques de motor de aluminio (una parte de los motores de autos), uno de los mayores mercados para el material reciclado, pueden hacerse de metal con niveles de impurezas relativamente altos sin sufrir ninguna pérdida en rendimiento o durabilidad. Pero aplicaciones más especializadas, como circuitos electrónicos o materiales aeroespaciales, requieren de pureza mucho más alta.

“Hay un gran rango de tolerancia a impurezas”, dice Olivetti. “La pregunta es, ¿Cómo será el balance de dichos mercados en el futuro comparado con los tipos de materiales que están saliendo a través del flujo de reciclaje?”.

El estudio encontró muchas técnicas disponibles para reducir las impurezas en el aluminio reciclado. En algunos casos, estas tecnologías son simplemente extensiones de aquellas ya en uso en la separación inicial de aluminio de menes (mineral del que se puede extraer un elemento) en bruto; otras son extensiones de procesos utilizados para separar diferentes materiales del flujo siendo reciclado. La mayoría de estos sistemas son difíciles de agregar a plantas ya existentes, encontró el estudio, así que tiene más sentido económico agregarlos conforme nuevas plantas sean construidas, incluso si aún no son necesitados.

“Continuamos recolectando más y más chatarra,” dice Kirchain, quien sugiere que “probablemente tendremos más y más problemas” con la acumulación de impurezas. Hasta ahora, los operadores de plantas fundidoras de aluminio han podido acomodar variaciones en la calidad. “Si el material que entra está más contaminado, tendrán que desviarlo hacia aplicaciones menos estrictas,” dijo. El material más limpio está reservado para las aplicaciones más especializadas, como las partes de aviones.

Kirchain dice que el análisis de su equipo, aunque dirigido específicamente al aluminio – también es un intento de desarrollar métodos para analizar el ciclo vital de otros materiales que se están volviendo partes significativas del flujo de reciclaje. E incluye análisis de factores sociales gobernando las decisiones de la gente sobre la eliminación de materiales, que puede afectar cuanto material contaminante termina en cierto flujo de desperdicios – o si algún material potencialmente útil termina en un vertedero de basura en vez de ser re-usado.

Para maximizar la utilidad del aluminio reciclado, así como el de otros materiales reciclados, hay una necesidad de más investigación sobre reducir contaminantes acumulados, dice Kirchain. “Esta es un área tecnológica en la que se ha invertido muy poco”. dijo. “La tecnología para lidiar con basura no es un campo emocionante, de alto perfil, pero hay valor real en invertir en esto”.

David Leon, un ingeniero en la división de tecnología de fundición de Alcoa Technology, quien no estuvo involucrado en este estudio, dice, “Desarrollando metodologías para incrementar el uso de chatarra que va disminuyendo en calidad es de mayor importancia para la industria. Igualmente importante es el desarrollo de herramientas para hacer las decisiones correctas con respecto a la implementación de estas tecnologías”.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Proyecto: invernadero gigante en el desierto de Qatar

Sahara
Imagen: Sahara Forest Project

Un invernadero único, gigante, que es irrigado usando agua del mar será construido en el desierto a finales de año, el cual está inspirado en las fosas nasales de los camellos, y en los escarabajos niebla-peregrinos.

El invernadero es parte del “Proyecto Bosque del Sahara” (Shara Forest Project), se ubica en las afueras de Doha en el desierto de Qatar. En el se propone extraer sal de forma natural y crear las condiciones necesarias para el crecimiento vegetal, todo sin ninguna energía externa o recursos, con un costo de 5.3 millones de dólares.

El sitio de 10,000 metros cuadrados explota la diferencia de temperaturas entre la superficie marina y el agua que se extrae de cientos de metros de la profundidad del mar por medio de la energía solar. Ambos son bombeados al sitio a través de tuberías separadas. El aire caliente del desierto se usa para evaporar el agua caliente de la superficie a medida que fluye sobre la evaporación de “setos” que se encuentran a un lado del invernadero. Ya fría, la humedad del aire pasa por encima de las plantas creando una temperatura agradable a su alrededor, luego se condensa a medida que pasa tuberías por las que el agua fría del mar profundo se bombea, creando agua dulce.

Más información
http://www.newscientist.com/blogs/ (en inglés)

Imágenes vía satélite muestran clima severo en Estados Unidos (video)

Esta película fue creada con el GOES-13, las imágenes vía satélite visibles e infrarrojas del 28 de febrero a las 6:45 a.m. tiempo central de México (12:45 UTC), al 1 de Marzo, donde se muestra la progresión del frente frío y una zona de baja presión asociada que se mueve sobre el centro de los Estados Unidos, que ha provocado al menos 20 tornados y tiempo severo el 29 de Febrero de 2012.

Fuente
http://www.nasa.gov/ (en inglés)

El calentamiento global podría afectar la seguridad alimentaria

Cultivos cereales calentamiento global

Debido al calentamiento global causado por los gases de efecto invernadero, hay probabilidades de que aumenten los cambios de temperatura en horarios de verano alrededor del mundo a finales de este siglo, esto tendrá serios efectos en la producción de alimentos, como en los cultivos de cereales: arroz, maíz y soya, en regiones de Europa, América del Norte y América del Sur.

En la actualidad los modelos climáticos no reflejan de forma adecuada la retroalimentación de la relación atmósfera y suelo, que conlleva a subestimar estos aumentos en temperaturas del horario de verano.

La producción de arroz en los trópicos ya se está viendo afectada por las altas temperaturas, y se cree que si otros factores continuan iguales, podría reducir la producción de cereales como de arroz, maíz y soya en un 30 o 40 por ciento.

“Si hay mayor variabilidad, las probabilidades de que la temperatura sea tan alta que no se pueda crecer un cultivo son mayores, En términos de seguridad alimentaria regional y mundial, no es buena noticia”, dijo David Battisti, profesor de ciencias atmosféricas de la Universidad de Washington.

Más Información
http://zeenews.india.com/ (en inglés)

El calentamiento global está matando al cedro amarillo en Alaska

Cedro amarillo
Imagen: Paul Hennon / AP file

Desde hace tiempo se sospechaba que el`calentamiento global estaba afectando a árboles, sobre todo el valioso Cedro Amarillo en Panhandle, Alaska, habiendo sido confirmado por los investigadores del Servicio Forestal de Estados Unidos.

El Cedro amarillo puede vivir más de 1,000 años, con una resistencia a insectos, putrefacción y además puede defenderse contra lesiones, pero su vulnerabilidad reside en sus raíces poco profundas, si no están aisladas por la nieve, estas pueden congelarse. Esto ha sucedido por más de un siglo, con menos nieve en el suelo sus raíces congeladas han causado su muerte, Afectando cerca de medio millón de acres en el sureste de Alaska, así como otras 123,000 hectáreas en el vecino país de Columbia Británica.

La investigación de la muerte de los árboles servirá a los administradores forestales para buscar un lugar donde el Cedro amarillo pueda tener el clima al que está acostumbrado para sobrevivir y sus raíces puedan resistir, así mismo la experiencia de lo sucedido a este árbol, muestra la gran importancia que el cambio climático jugará en la conservación de los bosques.

Más Información
http://www.msnbc.msn.com/ (en inglés)