Gen recién encontrado podría ayudar a las bacterias a sobrevivir en entornos extremos

Célula sin membrana protectora.
Célula sin membrana protectora.

Los lípidos microbiales resultantes también podrían significar caídas de oxígeno en la historia geológica de la Tierra.

Jennifer Chu, MIT News Office. Original (en ingles)

En los días que siguieron el derrame petrolero del Deepwater Horizon, bacterias que consumen metano prosperaron en el Golfo de México, alimentándose del metano que brotó, junto con el petróleo, del pozo dañado. La súbita afluencia de microbios fue una curiosidad científica: Anteriormente al derrame petrolero, científicos habían observado relativamente pocos signos de microbios que consumían metano en el área.

Ahora investigadores del MIT han descubierto un gen bacterial que podría explicar esta súbita afluencia de bacterias que se alimentan de metano. Este gen le permite a las bacterias sobrevivir en entornos extremos y carentes de oxígeno, durmientes hasta que la comida – como el metano de un derrame petrolero, y el oxígeno necesario para metabolizarlo – se vuelve disponibles. El gen codifica una proteína, llamada HpnR, que es responsable por producir lípidos bacteriales conocidos como 3-metilhopanoides. Los investigadores dicen que producir estos lípidos podría preparar mejor a los microbios para hacer una aparición súbita en la naturaleza cuando las condiciones son favorables, como después del accidente del Deepwater Horizon.

Los lípidos producidos por la proteína HpnR también podrían ser usados como biomarcadores, o una firma en las capas de roca, para identificar cambios dramáticos en los niveles de oxígeno en el transcurso de la historia geológica.

“Lo que nos interesa es que esto podría ser una ventana al pasado geológico”, dice la posdoctorado Paula Welander del Departamento de Ciencias de la Tierra, Atmosféricas y Planetarias (EAPS – Earth, Atmospheric and Planetary Sciences) del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts). “En el registro geológico, hace muchos millones de años, vemos un número de eventos de extinciones masivas donde hay evidencia de agotamiento de oxígeno en el océano. Es en estos eventos clave, e inmediatamente después de estos, donde también vemos un incremento en todos los biomarcadores como indicadores de una perturbación climática. Parece ser parte de un síndrome de calentamiento, deoxigenización del océano y extinción biótica. Las causas son desconocidas”.

Welander y el profesor de EAPS Roger Summons han publicado sus resultados esta semana en el Proceedings of the National Academy of Sciences (PNAS).

Una señal en las rocas

Diploptene, un compuesto hopanoide.
Diploptene, un compuesto hopanoide.

Las capas rocosas de la tierra sostienen restos de la evolución de la vida, desde las antiguas trazas de organismos unicelulares a los recientes fósiles de vertebrados. Uno de los biomarcadores clave que los geólogos han usado para identificar las formas tempranas de vida es una clase de lípidos llamados hopanoides, cuya robusta estructura molecular los ha preservado en el sedimento por miles de millones de años. Los hopanoides también han sido identificados en las bacterias modernas, y los geólogos estudiando los lípidos en las rocas antiguas los han usado como señales de la presencia de bacterias similares hace miles de millones de años.

Pero Welander dice que los hopanoides podrían ser usados para identificar más que las tempranas formas de vida: Los fósiles moleculares podrían ser biomarcadores para fenómenos ambientales – como períodos de muy bajo oxígeno.

Para probar la teoría, Welander examinó una cepa moderna de la bacteria llamada Methylococcus capsulatus, un organismo ampliamente estudiado aislado por primera vez de un baño público romano antiguo en Bath, Inglaterra. El organismo, que también vive en entornos pobres en oxígeno como las ventosas en lo profundo del océano y los volcanes de lodo, ha sido de interés para los científicos por su habilidad de consumir eficientemente grandes cantidades de metano – lo que podría hacerla útil en biomediación y desarrollo de biocombustibles.

Para Welander y Summons, M. capsulatus es especialmente interesante por su estructura: El organismo contiene un tipo de hopanoide con una estructura molecular de cinco anillos que contiene metilación C-3. Los geólogos han encontrado que dichas metilaciones en la estructura de anillo son particularmente bien preservadas en rocas antiguas, aún cuando el resto del organismo ha desaparecido.

Welander estudió el genoma de la bacteria e identificó hpnR, el gen que codifica la proteína HpnR, el que está específicamente asociado con la metilación C-3. Entonces diseñó un método para borrar el gen, creando una cepa mutante. Welander y Summons entonces crecieron cultivos de cepas mutantes así como cultivos de bacterias salvajes (sin alteraciones). El equipo expuso ambas cepas a los niveles bajos de oxígeno y los altos niveles de metano durante un período de dos semanas para simular un entorno pobre en oxígeno.

Durante la primera semana, había poca diferencia entre los dos grupos, ambos de los cuales consumieron metano y crecieron a alrededor de la misma taza. Sin embargo, en el día 14, los investigadores observaron que la cepa salvaje comenzó a crecer más rápido que la bacteria mutante. Cuando Welander añadió el gen hpnR de vuelta en la bacteria mutante, encontró que eventualmente esta regresaba a los niveles que se asemejaban al de la cepa salvaje.

Apenas logrando sobrevivir

¿Qué podría explicar el contraste dramático en las tasas de sobrevivencia? Para responder esto, el equipo usó microscopía electrónica para examinar las estructuras celulares en las bacterias mutantes y salvajes. Descubrieron la marcada diferencia: Mientras que el tipo salvaje estaba lleno con membranas normales y vacuolas, la cepa mutante no tenía ninguna.

Una célula bacterial con el gen, a la izquierda, exhibe la membrana protectora. Una célula sin el gen, a la derecha, no produce membranas.
Una célula bacterial con el gen, a la izquierda, exhibe la membrana protectora. Una célula sin el gen, a la derecha, no produce membranas. Imagen: Paula Welander

Las membranas faltantes, dice Welander, son una pista a la función del lípido. Ella y Summons postulan que el gen hpnR podría preservar las membranas celulares de las bacterias, lo que podría reforzar al microbio en tiempos de nutrientes agotados.

“Tienes a estas comunidades que apenas salen del paso, sobreviviendo en lo que pueden”, dice Welander. “Entonces cuando reciben una ráfaga de oxígeno o metano, pueden tomarlo muy rápidamente. Están realmente preparadas para aprovechar algo como esto”.

Los resultados, dice Welander, son especialmente emocionantes desde una perspectiva geológica. Si los 3-metilhopanoides realmente permiten a las bacterias sobrevivir en tiempos de oxígeno bajo, entonces un pico en el lípido relacionado en el registro rocoso podría indicar una disminución dramática en la historia de la Tierra, permitiendo a los geólogos entender mejor los períodos de extinciones masivas o grandes muertes masivas oceánicas.

“La meta original fue hacer esto un mejor biomarcador para los geólogos”, dice Welander. “Es [un trabajo] muy meticuloso, pero al final también queremos causar un mayor impacto, por ejemplo aprender como los microorganismos lidian con los hidrocarbonos en el entorno”.

David Valentine, un profesor de geoquímica microbial en la Universidad de California en Santa Bárbara, dice que el lípido objetivo del grupo es parecido al colesterol, que juega un papel importante en las membranas de células humanas y animales. Dice que el gen identificado por el grupo podría jugar un papel similar en bacterias.

“Este trabajo demuestra una importante unidad en biología”, dice Valentine. “Sus resultados son un paso necesario en proveer contexto para interpretar la distribución de estos biomarcadores en el registro geológico”.

Esta investigación fue patrocinada por la NASA y la Fundación Nacional de Ciencia de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Nuevo método para prevenir obstrucciones submarinas de hielo

Hidrato de metano
Imagen: Wuse 1007 / wikipedia

Revestimientos superficiales desarrollados por investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) podrían inhibir la acumulación de hidratos de metano que pueden bloquear pozos profundos de petróleo y gas.

David L. Chandler, MIT News Office. Original (en inglés).

Durante el derrame petrolero masivo del pozo roto Deepwater Horizon en el 2010, parecía al principio que podría haber un arreglo rápido: un domo de contención que se bajara a la tubería rota para capturar el flujo para que pudiera ser bombeado a la superficie y eliminado apropiadamente. Pero ese intento falló rápidamente, porque el domo casi instantáneamente se obstruyó con hidrato de metano congelado.

Los hidratos de metano, que se congelan al contacto con agua fría en lo profundo del océano, son un problema crónico para los pozos de petróleo y gas profundos. Algunas veces estos hidratos congelados se forman dentro de la cubierta del pozo, donde pueden restringir e incluso bloquear el flujo, con un costo enorme para los operadores del pozo.

Ahora investigadores del MIT, liderados por el profesor asociado de Ingeniería Mecánica Kripa Varanasi, dicen que han encontrado una solución, descrita recientemente en el diario Physical Chemistry Chemical Physics. El autor líder de la revista académica es J. David Smith, un estudiante graduado de ingeniería mecánica.

El océano profundo se está convirtiendo en “una fuente clave” de nuevos pozos de petróleo y gas, dice Varanasi, conforme las demandas de energía del mundo continúan incrementándose rápidamente. Pero uno de los problemas cruciales en hacer viables estos pozos profundos respecto a la “garantía de flujo”: encontrar maneras de evitar la acumulación de hidratos de metano. Presentemente, esto se hace principalmente mediante el uso de sistemas de calefacción caros o aditivos químicos.

“Las industrias de petróleo y gas actualmente gastan al menos $200 millones de dólares al año solo en químicos” para prevenir dichas acumulaciones, dice Varanasi; fuentes de la industria dicen que la cifra total por la prevención y la producción perdida debido a hidratos podría estar en los miles de millones de dólares. El nuevo método de su equipo usaría en su lugar recubrimientos pasivos en los interiores de las tuberías que están diseñados para prevenir que los hidratos se adhieran.

Estos hidratos forman una estructura cristalina similar a una caja, llamada clatrato, en la que moléculas de metano son atrapadas en retículos de moléculas de agua. Aunque se ven como hielo ordinario, los hidratos de metano se forman solo bajo el agua a alta presión: en las aguas profundas o debajo del lecho oceánico, dice Smith. Según algunos estimados, la cantidad total de metano (el ingrediente principal del gas natural) contenido en los clatratos del lecho marino mundial exceden por mucho la cantidad conocida de reservas de todos los otros combustibles fósiles combinados.

Dentro de las tuberías que cargan el aceite o el gas de las profundidades, los hidratos de metano pueden adherirse a las paredes internas – como la placa que se acumula dentro de las arterias del cuerpo – y, en algunos casos, eventualmente bloquear el flujo completamente. Los bloqueos pueden suceder sin advertencia, y en casos severos requieren que la sección bloqueada de la tubería sea cortada y reemplazada, resultando en largos apagones de producción. Los esfuerzos de prevención presentes incluyen calefacción clara o aislamiento de las tuberías o aditivos como metanol introducidos en el flujo de gas o petróleo. “El metanol en un buen inhibidor”, dice Varanasi, pero es “muy agresivo ambientalmente” si escapa.

El grupo de investigación de Varanasi comenzó a analizar el problema antes del derrame del Deepwater Horizon en el Golfo de México. El grupo se ha enfocado por mucho tiempo en maneras de prevenir la acumulación de hielo ordinario – como en las alas de un avión – y en la creación de superficies hidrofóbicas, que previenen que las gotas de agua se adhieran a una superficie. Entonces Varanasi decidió explorar el potencial para crear lo que el llama superficies “hidrato-fóbicas” para prevenir que los hidratos se adhieran duramente a las paredes de las tuberías. Debido a que los mismos hidratos de metano son peligrosos, los investigadores trabajaron casi exclusivamente con un modelo de sistema de hidrato clatrato que exhibe propiedades similares.

El estudio produjo varios resultados significativos: Primero, utilizando un recubrimiento simple, Varanasi y sus colegas fueron capaces de reducir la adhesión de hidratos en la tubería a un cuarto de la cantidad en superficies no tratadas. Segundo, el sistema de pruebas que diseñaron provee una manera siemple y barata de buscar inhibidores aún más efectivos. Finalmente, los investigadores también encontraron una fuerte correlación entre las propiedades “hidrato-fóbicas” de una superficie y su humectabilidad – una medición de qué tan bien el líquido se esparce en la superficie.

Los encuentros básicos también aplican a otros adhesivos sólidos, dice Varanasi – por ejemplo, soldadura adhiriéndose a un circuito, o depósitos de calcita dentro de líneas de plomería – así que los mismos métodos de prueba pueden ser usados para analizar recubrimientos para una amplia variedad de procesos comerciales e industriales.

Richard Camilli, un científico asociado en Física Oceánica Aplicada e Ingeniería en la Institución Oceanográfica Woods Hole quien no estuvo involucrado en este estudio, dice, “La industria de la energía ha estado luchando con problemas de seguridad y garantía de flujo relacionados con la formación de hidratos y bloqueos por casi un siglo”. Añade que el problema se está volviendo más significativo mientras que el taladrado progresa a aguas aún más profundas y dice que el trabajo del equipo de Varanasi “es un gran paso hacia encontrar formas más amigables ambientalmente para prevenir la obstrucción de hidrato en las tuberías”.

El equipo investigador incluyó al postdoctorado del MIT Adam Meuler y al estudiante Harrison Bralower; al profesor de Ingeniería Mecánica Gareth McKinley; al profesor de Ingeniería Química Robert Cohen; y a Silva Subramanian y Rama Venkatesan, dos investigadores de la Compañía Tecnológica Chevron Energy. El trabajo fue patrocinado por el programa Iniciativa de Energía Chevron del MIT y por el consejo Doherty en Utilización Oceánica de Varanasi.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)