Gas de invernadero puede encontrar un hogar bajo tierra

Gas invernadero
Image: Michael Szulczewski, of the Juanes Research Group, MIT

Un nuevo análisis del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) muestra que hay suficiente espacio para guardar seguramente al menos un siglo de emisiones de combustibles fósiles de los Estados Unidos

David L. Chandler, MIT News Office. Original (en inglés).

Un nuevo estudio por investigadores del MIT muestra que hay la suficiente capacidad en acuíferos salinos profundos en los Estados Unidos para guardar al menos un siglo de emisiones de dióxido de carbono de las plantas eléctricas que queman carbón. Aunque quedan preguntas sobre la economía de sistemas para capturar y guardar dichos gases, este estudio se enfoca en un problema principal que ha dejado en la sombra dichas propuestas.

El análisis del equipo del MIT – liderado por Ruben Juanes, un profesor asociado en Estudios Energéticos en el Departamento de Ingeniería Civil y del Entorno, y parte del trabajo de tesis doctoral de los estudiantes graduados Christopher MacMinn y Michael Szulczewski – será publicado esta semana en el Proceedings of the National Academy of Sciences (PNAS).

Las plantas eléctricas que queman carbón generan alrededor del 40% de las emisiones de carbono en el mundo, entonces el cambio climático “no será abordado a menos que se lidie con las emisiones de dióxido de carbono de plantas de carbón”, dice Juanes. “Debemos hacer muchas cosas diferentes” como desarrollar alternativas nuevas y más limpias, dice, “pero una cosa que no va a irse es el carbón”, por que es una fuente de poder barata y ampliamente disponible.

Esfuerzos para reducir los gases de invernadero se han enfocado principalmente en la búsqueda de fuentes de energía prácticas y económicas, como el viento o energía solar. Pero las emisiones humanas son ahora tan vastas que muchos analistas piensan que es improbable que estas tecnologías solas puedan resolver el problema. Algunos han propuesto sistemas para capturar emisiones – principalmente dióxido de carbono del quemado de combustibles fósiles – entonces comprimirlas y guardar el desecho en formaciones geológicas profundas. Este acercamiento es conocido como captura y almacenaje de carbón, o CSS (carbon capture and storage).

Uno de los lugares más prometedores para almacenar el gas es en los profundos acuíferos salinos: aquellos más de una milla debajo de la superficie, muy por debajo de las fuentes de agua dulce usadas para consumo humano y agricultura. Pero los estimados de la capacidad de dichas formaciones en los Estados Unidos han variado desde guardar solo algunos años de emisiones de plantas de carbón hasta muchos miles de años de emisiones.

La razón para la enorme disparidad en las estimaciones es por dos causas. Primera, por que los acuíferos salinos profundos no tienen valor comercial, ha habido poca exploración para determinar su extensión. Segunda, la dinámica de fluidos de cómo el dióxido de carbono concentrado y licuado se esparciría a través de dichas formaciones es muy compleja y difícil de modelar. La mayoría de los análisis simplemente estimaron el volumen promedio de las formaciones, sin considerar la dinámica de cómo el CO2 las infiltraría.

El equipo del MIT modeló cómo el dióxido de carbono se filtraría a través de la roca, tomando en cuenta no solo la capacidad final de las formaciones sino la tasa de inyección que podría sustentarse en el tiempo. “La clave es capturar las físicas esenciales del problema”, dice Szulczewski, “pero simplificándolo lo suficiente para poder aplicarlo al país entero”. Eso significó ver los detalles de los mecanismos de captura en la roca porosa a la escala de los micrones, entonces aplicando ese entendimiento a formaciones en un espacio de cientos de millas.

“Comenzamos con el grupo complicado completo de ecuaciones para el flujo fluídico, y entonces lo simplificamos”, dice MacMinn. Otros estimados han tendido a sobresimplificar el problema, “perdiendo algunas de las sutilezas de la física”, dice. Mientras que este análisis se enfocó en los Estados Unidos, MacMinn dice que capacidades de almacenamiento similares seguramente existen alrededor del mundo.

Howard Herzog, un investigador ingeniero principal con la Iniciativa de Energía del MIT y co-autor de la revista académica del PNAS, dice que este estudio “demuestra que la tasa de inyección de CO2 en una reserva es un parámetro crítico al hacer estimados de almacenamiento”.

Cuando está licuado el dióxido de carbono es disuelto en el agua salada, el fluido resultante es más denso que cualquiera de los componentes, así que se hunde naturalmente. Es un proceso lento, pero “una vez que el dióxido de carbono está disuelto, has ganado el juego”, dice Juanes, por que la mezcla densa y pesado es casi seguro que nunca volverá a escapar de vuelta a la atmósfera.

Mientras que este estudio no tomó en consideración el costo de los sistemas CCS, muchos analistas han concluido que podrían agregar de un 15 a un 30 por ciento al costo de la electricidad generada con carbón, y no sería viable a menos que un impuesto al carbono o un límite a las emisiones de carbono fuera implementado.

Franklin Orr Jr., un profesor de ciencias de la tierra y director del Instituto Precourt para la Energía en la Universidad de Stanford, dice, “La contribución importante de este trabajo es que agrega consideración de la tasa de inyección de CO2, por que puede ser restringido por el aumento de la presión en los acuíferos salinos profundos. Esta revista académica provee evidencia que aún cuando esas restricciones son consideradas hay mucha capacidad de almacenamiento. Esa es una contribución muy útil”.

James J. Dooley, un científico principal en el Laboratorio Nacional del Noroeste del Pacífico quien no estuvo involucrado en el estudio del MIT, lo llamó “un muy buen análisis que demuestra que dadas las condiciones regulatorias y económicas apropiadas, las tecnologías de captura y almacenamiento del dióxido de carbono pueden ser la base de reducciones de gases de invernadero profundas y sostenidas en los Estados Unidos y alrededor del mundo”.

Mientras que quedan incertidumbres, “Realmente pienso que CSS tiene un papel que jugar”, dice Juanes. “No es la última salvación, es un puente, pero podría ser esencial por que realmente puede afrontar las emisiones de carbón y gas natural”.

La investigación fue apoyada por fondos del Departamento de Energía de los Estados Unidos, la Iniciativa de Energía del MIT, el Fondo de Investigación Reed, la Sociedad de Becarios de la Familia Martin para la Sustentabilidad y la Cátedra de Estudios de Energía ARCO.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Un biplano romperá la barrera del sonido

Biplano
Imagen: Christine Daniloff / MIT News

Biplanos más baratos, silenciosos y eficientes en combustible podrían poner los viajes supersónicos en el horizonte

Jennifer Chu, MIT News Office. Original (en inglés).

Por 27 años, el Concorde le dio a sus pasajeros un raro lujo: ahorro de tiempo. Por un caro boleto, el jet supersónico llevó a los poseedores de boletos de Nueva York a París en solamente tres horas y media – apenas tiempo suficiente para une siesta y un aperitivo. Tras varios años, los caros boletos, los altos costos de energía, los asientos limitados y el problema del ruido de la explosión sónica alentaron el interés y las ventas de boletos. El 26 de noviembre del 2003, el Concorde – y los vuelos comerciales supersónicos – se retiraron del servicio.

Desde entonces, un número de grupos han estado trabajando en diseños para la siguiente generación de jets supersónicos. Ahora un investigador del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) ha propuesto un concepto que podría resolver muchos de los problemas que dejaron al Concorde en tierra. Qiqi Wang, un profesor asistente de aeronáutica y astronáutica, dice que la solución, en principio, es simple: En lugar de volar con una ala a un lado, ¿por qué no dos?

Wang y sus colegas Rui Hu, un postdoctorado en el Dapartamento de Aeronáutica y Astronáutica, y Antony Jameson, un profesor de ingeniería en la Universidad de Stanford, han mostrado a través de un modelo de computadora que un biplano modificado puede, de hecho, producir mucho menos arrastre que un avión convencional de un ala a velocidades de crucero supersónicas. El grupo publicará sus resultados en el Journal of Aircraft (diario de aeronaves).

Este arrastre reducido, de acuerdo a Wang, significa que el avión requeriría menos combustible para volar. También significa que el avión produciría una explosión sónica menos intensa.

“La explosión sónica es en realidad las ondas de choque creadas por los aviones supersónicos, propagada al suelo”, dice Wang. “Es como escuchar disparos. Es tan molesto que a los jets supersónicos no les estaba permitido volar cerca de la tierra”.

Duplica las alas, duplica la diversión

Con el diseño de Wang, un jet con dos alas – una posicionada encima de la otra – cancelaría las ondas de choque producidas de cualquiera de las alas sola. Wang le otorga el crédito al ingeniero alemán Adolf Busemann por el concepto original. En los años 50, Busemann presentó un diseño de biplano que esencialmente elimina las ondas de choque a velocidades supersónicas.

Normalmente, conforme un jet convencional se acerca a la velocidad del sonido, el aire comienza a comprimirse en el frente y en la parte de atrás del jet. Conforme el avión alcanza y supera la velocidad del sonido, o Mach 1, el incremento súbito en la presión del aire crea dos enormes ondas de choque que irradian a ambos extremos del avión, produciendo una explosión sónica.

Por medio de cálculos, Busemann encontró que un diseño de biplano podría esencialmente eliminar las ondas de choque. Cada ala del diseño, cuando se ve de lado, tiene la forma de un triángulo aplanado, con las alas superior e inferior apuntando una hacia la otra. La configuración, de acuerdo a sus cálculos, cancela las ondas de choque producidas por cada ala sola.

Sin embargo, al diseño le falta elevación: las dos alas crean un canal muy estrecho a través del cual solo una cantidad de aire limitada puede fluir. Cuando la transición a velocidades supersónicas, el canal, dice Wang, podría esencialmente “asfixiarse”, creando un arrastre increíble. Mientras que el diseño podría funcionar bellamente a velocidades supersónicas, no puede sobreponerse al arrastre para alcanzar dichas velocidades.

Elevando una teoría que sigue en tierra

Para lidiar con el asunto del arrastre, Wang, Hu y Jameson diseñaron un modelo de computadora para simular el rendimiento del biplano de Busemann a varias velocidades. A una velocidad dada, el modelo determinó la forma óptima de las alas para minimizar el arrastre. Los investigadores agregaron entonces los resultados de una docena de diferentes velocidades y 700 configuraciones de alas y obtuvieron una forma óptima para cada ala.

Encontraron que suavizar la superficie interna de cada ala ligeramente creaba un canal más amplio a través del cual pudiera fluir el aire. Los investigadores también encontraron que al elevar el borde superior del ala más alta, y la parte inferior del ala baja, el avión conceptual era capaz de volar a velocidades supersónicas, con la mitad del arrastre de los jets supersónicos convencionales como el Concorde. Wang dice que este tipo de rendimiento podría potencialmente cortar la cantidad de combustible requerido para volar el avión a más de la mitad.

“Si piensas al respecto, cuando despegas, no solo tienes que cargar a los pasajeros, sino también el combustible, y si puedes reducir el combustible quemado, puedes reducir cuanto combustible necesitas cargar, lo que a su vez reduce el tamaño de la estructura que necesitas para cargar el combustible”, dice Wang. “Es como una reacción en cadena”.

El próximo paso del equipo es diseñar un modelo tridimensional para tomar en consideración otros factores que afectan el vuelo. Mientras que los investigadores del MIT están buscando un diseño óptimo simple para el vuelo supersónico, Wang menciona que un grupo en Japón ha logrado progreso al diseñar un biplano como el de Busemann con partes movibles: Las alas esencialmente cambiarían de forma en medio del vuelo para alcanzar velocidades supersónicas.

“Ahora la gente tiene más ideas sobre como mejorar el diseño [de Busemann]”, dice Wang. “Esto puede llevar a una mejora dramática, y podría haber una explosión en el campo en los años venideros”.

“Hay muchos desafíos diseñando aeronaves supersónicas realistas, como el alto arrastre, motores eficientes y explosiones sónicas bajas”, dice Karthik Duraisamy, profesor asistente de aeronáutica y astronáutica en la Universidad de Stanford, quién no estuvo involucrado en la investigación. “La revista académica del doctor Wang presenta un primer paso importante hacia reducir el arrastre, y también está el potencial para afrontar los problemas estructurales”.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Japón comparte datos atmosféricos de SMILES

SMILES
Imagen: NICT

¿Entraste en pánico cuando se escuchó en las noticias recientes que dos masivas llamaradas solares del sol golpeaban la atmósfera de la tierra?. Las eyecciones de masa coronal, o CMEs (coronal mass ejections), normalmente producidas por erupciones solares pueden representar un peligro, si no fuera por la protectora atmósfera terrestre y la magnetósfera. Usando la investigación y la tecnología de la Estación Espacial Internacional, los científicos continúan aprendiendo más acerca de la atmósfera, añadiendo nuevos e importantes datos para la comprensión colectiva de este importante velo de defensa.

Los gases atmosféricos, sostenidos por su gravedad, rodean a nuestro planeta y nos mantienen a salvo de temperaturas extremas, radiación ultravioleta, y el vacío del espacio. Mientras tanto, los campos magnéticos generados por y alrededor de la Tierra – la magnetósfera – ayudan a protegernos de los siempre presentes, viento solar e incremento de eventos de radiación que resultan de las CMEs.

La Agencia de Exploración Aeroespacial Japonesa, o (JAXA – Japanese Aerospace Exploration Agency), desarrolló una tecnología de alta precisión que reside fuera de la estación, montada en Instalación de Módulo Expuesto Experimental Japonés, o JEM-EF (Japanese Experiment Module-Exposed Facilicy), como parte de una investigación para estudiar la composición química de la atmósfera media de la Tierra. Conocido como la sirena superconductora de onda-submilimétrica de emisión de extremidades, o SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder) este dispositivo utiliza un detector superconductor enfríado a 4 grados Kelvin (-269 grados celsius) y es el primero de su tipo en el espacio.

Una corporación entre JAXA y el Instituto Nacional Japonés de Información y Comunicación Tecnológica, o (NICT – National Institute of Information and Communications Technology) hizo posible el desarrollo de SMILES. Su objetivo combinado era usar esta tecnología en la Estación Espacial para demostrar lo altamente sensible de las ondas submilimétricas de “la capa de ozono”.

La capa de ozono ayuda a proteger la vida en la Tierra de la dañina radiación ultravioleta, y es destruida por rastros de componentes atmosféricos tales como el cloro y el bromo que pueden ser producidos a partir de fabricación humana como refrigerantes, solventes y otros componentes. Los datos recogidos por SMILES mejoran nuestro entendimiento de cómo estos rastros de componentes atmosféricos impactan la capa de ozono.

Un selecto de grupos de investigación recibió datos de SMILES, unica por su alta sensibilidad en la detección de la química atmosférica. El uso de sus estos datos pueden ayudar a los científicos a encontrar respuestas a las preguntas del cambio de clima, incluyendo la capa de ozono y la investigación del calentamiento global. Mientras que SMILES ya no está recopilando datos. El hardware continúa funcionando como una tecnología de pruebas en la órbita.

Un reciente comunicado de prensa de JAXA anunció que los datos de alta precisión confirmados de este estudio, compilados durante un período de 6 meses que finalizó en abril de 2010, están ahora disponibles para su divulgación al público. Los datos de SMILES incluyen 11 tipos de elementos atmosféricos menores, tales como compuestos de cloro y ozono. Este conocimiento ayuda para expander el conocimiento científico de la composición química de la atmósfera, específicamente en lo estratósfera y en la mesósfera baja.

Los científicos interesados pueden ahora descargar esta información para el estudio de la química atmosférica mediante registrarse en línea. También pueden escribir al correo electrónico de JAXA – incluyendo nombre, afiliación y los objetivos en menos de 50 palabras – por el permiso para ver la información de datos – release@smiles.tksc.jaxa.jp. También pueden visitar el nuevo sitio web Beneficios de la Estación Espacial Internacional para Humanidad para una presentación detallada de SMILES.

Fuente
http://www.nasa.gov/ (en inglés)

Espectrómetro de plasma de Cassini reinicia operaciones

Cassini
Imagen: NASA / JPL

El instrumento expectómetro de plasma del Cassini (CAPS – Spectrometer Plasma Cassini)a bordo de la nave espacial Cassini de la Nasa a saturno ha reanudado operaciones. Los directores de la misión recibieron la confirmación el viernes, 16 de Marzo, que fue activado. Planean monitorear el instrumento por cualquier comportamiento inusual.

El pasado mes de junio, cortos circuitos en el instrumento llevaron a cambios de voltaje inesperados en la nave espacial. Como precaución, directores de la misión apagaron el instrumento CAPS, mientras que los ingenieros investigaban el problema. La investigación llegó a la conclusión que el recubrimiento de estaño en los componentes electrónicos habían crecido “bigotes”. Los bigotes eran muy pequeños, menos que el diámetro de un cabello humano, pero eran lo suficientemente grandes para ponerse en contacto con otras superficies conductoras, y llevar a la corriente eléctrica. Los investigadores todavía están tratando de entender por qué los bigotes crecen en estaño y otros metales, pero ahora saben que los bigotes pueden crecer en el espacio y en la tierra. Se cree que estos filamentos de estaño o adicionales que pueden crecer en Cassini no pueden llevar corriente suficiente para causar problemas, sino que se quemarán por su cuenta como un fusible de peso ligero.

Cassini fue lanzada en 1997 y ha estado explorando el sistema de Saturno desde 2004. El proyecto completó su misión principal original en 2008 y ha sido extendido dos veces. Cassini está ahora en su misión de solsticio, que permitirá a los científicos observar los cambios estacionales en el sistema de Saturno a través del solsticio de verano del hemisferio norte.

La misión Cassini-Huygens es un proyecto cooperativo de la NASA, la Agencia Espacial Europea y la Agencia Espacial Italiana. El Laboratorio de propulsión a chorro, una división del Instituto de Tecnología de California en Pasadena, gestiona la misión para la Dirección de Misiones de Ciencia de la NASA, en Washington.

Fuente
http://www.nasa.gov/ (en inglés)

Los bilingües son más inteligentes

Cerebro zona principios
© flickr.com / Gaetan Lee

En años recientes, los investigadores han comenzado a mostrar que las ventajas de ser bilingüe van más allá de, el poder conversar en otro idioma. Por lo visto ser bilingüe puede tener un profundo efecto en el cerebro, ya que el cerebro está forzado a resolver conflictos internos, y esto es como un ejercicio para la mente que fortalece los músculos cognitivos.

La evidencia recolectada sugiere que el ser bilingüe mejora la llamada función ejecutiva del cerebro – un sistema de comandos que dirige los procesos de atención que utilizamos para planear, resolver problemas y desarrollar varias tareas mentales complicadas. Además, un estudio reciente en 44 ancianos bilingües en español e inglés encontró que la demencia y otros síntomas de la enfermedad de Alzheimer comenzaban a mayor edad mientras más alto fuera el dominio de dos idiomas.

Más información
https://www.nytimes.com/ (en inglés)

Dióxido de carbono atmosférico más alto que en los últimos 800,000 años

Burbujas de Dióxido de Carbono
Burbujas de Dióxido de Carbono

Los niveles atmosféricos de dióxido de carbono en la atmósfera son ahora más altos que en cualquier otro punto en los últimos 800,000 años, mientras que en Australia la última década ha sido la más calurosa registrada, dicen científicos de CSIRO (Commonwealth Scientific and Industrial Research Organisation – Organización de Investigación de la Comunidad Científica e Industrial).

Las temperaturas en Australia se espera que se eleven entre 1°C y 5°C para el año 2070 “cuando se compara con el clima de las décadas recientes”. El Doctor Paul Fraser, científico investigador principal de CSIRO, dice que la cantidad de carbono en la atmósfera alcanzó las 390 partes por millón. “No encontramos evidencia de niveles de carbono en la atmósfera por encima de las 300 partes por millón en los últimos 800,000 años”, dijo.

El reporte dice que los incrementos proyectados en la temperatura conducirán a inundaciones, sequías y ciclones extremos.

Más información
http://www.abc.net.au/ (en inglés)

Beber gaseosa/refresco/soda aumenta el riesgo de ataques al corazón

Gaseosas

Investigadores de Harvard encontraron que los hombres que beben una bebida endulzada con azúcar por día tienen un riesgo mayor del 20 por ciento de sufrir ataques al corazón comparado a aquellos que evitan las bebidas azucaradas, de acuerdo a un estudio publicado en el diario Circulation (circulación).

Y mientras mayor sea el consumo, mayor es el riesgo, dos bebidas al día incrementan el riesgo en un 42%, mientras que tres lo incrementan en un 69%. Las bebidas azucaradas también están asociadas a factores inflamatorios más altos. Los factores inflamatorios podrían ser la causa principal detrás de los ataques al corazón, por lo cual tiene sentido que las bebidas azucaradas aumenten este riesgo.

El estudio no encontró una relación entre las bebidas de dieta y el riesgo de enfermedades cardiacas. “Pero probablemente hay mejores opciones, como el agua, el café y el té”, dijo Lawrence de Koning, autor principal del estudio.

Más información
Linda Carroll en http://vitals.msnbc.msn.com/ (en inglés)

Atrapando luz, mucha luz

Imagen:  Yanxia Cui
Metamateriales

Un nuevo diseño de un metamaterial por el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) podría ser mucho más eficiente capturando la luz solar que las celdas solares existentes.

David L. Chandler, MIT News Office. Original (en inglés)

Los metamateriales son una nueva clase de sustancias artificiales con propiedades diferentes a cualquiera encontrada en el mundo natural. Algunos han sido diseñados para actuar como mantos de invisibilidad; otros como superlentes, sistemas de antena o detectores altamente sensibles. Ahora, investigadores en el MIT y en otras partes han encontrado una manera de usar metamateriales para absorber un amplio rango de luz con eficiencia extremadamente alta, lo cual dicen que podría llevar a una nueva generación de celdas solares y sensores ópticos.

Nicholas X. Fang, un profesor de Diseño de Ingeniería en el Departamento de Ingeniería Mecánica del MIT, dice que la mayoría de materiales delgados usados para capturar completamente la luz están limitados a un rango muy angosto de longitudes de onda y ángulos de incidencia. El nuevo diseño usa un patrón de crestas en forma de cuña cuyos anchos están precisamente sintonizados a diferentes para alentar y capturar la luz en un gran rango de ancho de banda y ángulos de incidencia.

Estos materiales pueden ser extremadamente delgados, ahorrando peso y costo. Fang compara las estructuras al caracol del oído interno, que responde a diferentes frecuencias de sonido en diferentes puntos a través de su estructura que se va estrechando. “Nuestros oídos separan diferentes frecuencias y las recolecta a diferentes profundidades”, dijo; similarmente, las crestas del metamaterial recolectan fotones a diferentes profundidades.

La estructura actual del material es grabada alternando capas de metal y un material aislante llamado dieléctrico, cuya respuesta a la luz polarizada puede ser variada al cambiar un campo eléctrico aplicado al material. La creación de este nuevo material es descrita en una revista académica que será publicada en la futura edición del diario Nano Letters. Una versión preliminar de la revista académica de Fang – realizada junto con investigadores de la Univerzidad Zhejiang y la Universidad Taiyuan en China, y la Universidad de Illinois – está disponible en línea ahora.

King Hung Fung, un postdoctorado del MIT y co-autor de la revista académica en Nano Letters, dice, “Lo que hemos hecho es diseñar una estructura de diente de sierra con múltiples capas que puede absorber un amplio rango de frecuencias” con una eficiencia de más del 95%. Previamente, dicha eficiencia solo podía ser alcanzada con materiales sintonizados a una banda muy estrecha de longitudes de onda. “La absorción de alta eficiencia había sido alcanzada antes, pero este diseño tiene una ventana muy amplia” para colores de luz, dice Fung.

Los metamateriales han sido “un tema muy popular esta década”, dijo, “por que pueden ayudarnos a diseñar materiales funcionales que interactuan con luz de formas no convencionales”. Usando el metamaterial sintonizado, dice, su equipo fue capaz de alentar la luz a menos de una centésima de su velocidad normal en un vacio, haciendo mucho más fácil atraparla dentro del material. “Cuando algo va muy rápido, es difícil atraparlo”, dijo, “así que lo alentamos y es más fácil de absorber”.

El material puede ser fácilmente fabricado usando equipo que ya es estándar en la fabricación de celdas fotovoltaicas convencionales. Aunque el trabajo inicial estuvo basado en simulaciones de computadora, el equipo trabaja ahora en experimentos de laboratorio para confirmar sus hallazgos.

Además de celdas solares, el diseño puede ser usado para hacer detectores infrarrojos eficientes para un rango selecto de longitudes de onda. “Podemos mejorar selectivamente la interacción del material con la luz infrarroja a las langitudes de onda que queremos”, dijo Fung.

Fang dice que por su naturaleza, el material sería un emisor y absorbedor muy eficiente de fotones – así que adicionalmente al uso potencial en nuevos tipos de celdas solares o detectores infrarrojos, el material podría ser utilizado para aplicaciones emisoras de luz infrarroja, como dispositivos para generar electricidad a partir de calor. Además, los investigadores dicen que el principio podría ser escalado y ser usado para capturar o emitir radiación electromagnética a otras longitudes de onda, como microondas y frecuencias de terahertz. Incluso podría ser usado para producir luz visible con un costo de energía extremadamente bajo, creando un nuevo tipo de foco de alta eficiencia.

Richard Averitt, un profesor de física en la Universidad de Boston que no estuvo involucrado en esta investigación, llama a la estructura con forma de diente de sierra desarrollada por este equipo “un acercamiento único e impresionante hacia crear absorbedores de ancho de banda funcionales” que podrían tener aplicaciones en detección térmica y en recolección de luz para aplicaciones de energía. Advierte que se requiere de más trabajo para facilitar la fabricación e integración de los materiales, pero agrega, “Esta es una intrigante estructura que alenta ondas que deben inspirar nuevos desarrollos en este campo”.

El trabajo fue patrocinado por la Fundación Nacional de Ciencia de los Estados Unidos, y la Fundación Nacional de Ciencia de China y la Oficina Asiática de Investigación y Desarrollo Aeroespacial.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Trasplantes de órganos no emparentados libres de drogas

Trasplante de órganos
A. Massee / Science Photo Library

Una transferencia de médula ósea podría terminar con la necesidad de inmunosupresores toda la vida tras un trasplante. El rechazo en los trasplantes, algo conocido en inglés como GvHD (Graft-versus-host disease – enfermedad de injerto-contra-anfitrión) es una complicación comúnmente mortal de los trasplantes de médula osea que ocurre cuando las células inmunes de un donador atacan a la persona que recibió el trasplante de tejido.

Por vez primera, investigadores han logrado reemplazar completamente las células madre derivadas de la médula ósea con las de donadores no relacionados sin causar GvHD1. Y gracias a esto, quienes reciban este trasplante también podrían aceptar riñones del mismo donador sin la necesidad de drogas que supriman al sistema inmunológico.

El equipo investigador, liderado por Suzanne Ildstad, director del Instituto para Terapeutica Celular de la Universidad de Luisville en Kentucky, encontró una manera de evitar GvHD utilizando un régimen que involucró quimioterapia, radiación y células madre sanguíneas manipuladas para eliminar aquellas que causan GvHD mientras retenía las células de la médula ósea especializadas que ellos llaman “células facilitadoras”.

Mucho del método utilizado es ahora un secreto, Ildstad busca una manera de comercializar el descubrimiento a través de una compañía que fundó llamada Regenerex, basada en Louisville.

Más información
http://www.nature.com/ (en inglés)

Ayunar puede ayudar a proteger contra enfermedades del cerebro

Ayuno alzheimer parkinson

Investigadores en el Instituto Nacional del Envejecimiento en Baltimore dicen haber encontrado evidencia que muestra que períodos de detener virtualmente toda la alimentación por uno o dos días a la semana podría proteger al cerebro contra algunos de los peores efectos del Alzheimer, el Parkinson y otras enfermedades.

“Reducir tu consumo de calorías podría ayudar a tu cerebro, pero hacerlo al detener tu consumo de alimentos probablemente no sea el mejor método de activar esta protección. Probablemente sea mejor tener períodos intermitentes de ayuno, en los que casi no comas nada, y luego tener períodos en los que comas todo lo que quieras”, dijo el profesor Mark Mattson, cabeza del laboratorio de neurociencias del instituto.

Cortar el consumo diario a alrededor de 500 calorías – que es un poco más que algunos vegetales y algo de té – por dos días de siete tuvieron claros beneficios en sus estudios. “Las células del cerebro se sujetan a un estrés medio que es análogo a los efectos del ejercicio en células musculares”, dijo Mattson.

Imagen: Alfred Pasieka/Science Photo Library

Más información
http://www.guardian.co.uk