Neurocientíficos vinculan patrones cerebro-onda al consumo de energía

Emery Brown y ShiNung Ching
Emery Brown y ShiNung Ching. Imagen: M. Scott Brauer

Un nuevo modelo de actividad neuro-eléctrica podría ayudarle a científicos a entender mejor los estados inactivos del cerebro como el coma.

Por Anne Trafton, MIT News Office. Original (en inglés).

Diferentes estados del cerebro producen diferentes ondas de actividad eléctrica, con el cerebro alerta, el cerebro relajado y el cerebro durmiendo produciendo patrones en electroencefalogramas (EEG) fácilmente reconocibles. Estos patrones cambian aún más dramáticamente cuando el cerebro entra en ciertos estados inactivos profundos durante anestesia general o un coma.

Investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y de la Universidad de Harvard descubrieron como uno de estos estados inactivos, conocido como supresión de ráfagas (burst suppression), se da. El encuentro, reportado en la edición en línea de PNAS (Proceedings of the National Academy of Sciences) la semana del 6 de febrero, podría ayudar a los investigadores a monitorear mejor otros estados en los que ocurre la supresión de ráfagas. Por ejemplo, también es visto en los cerebros de víctimas de ataques cardíacos que son enfriados para prevenir daño cerebral debido a la privación de oxígeno, y en los cerebros de pacientes deliberadamente colocados en comas médicos para tratar una lesión cerebral traumática o ataques intratables.

Durante la supresión de ráfagas, el cerebro está callado por varios segundos a la vez, interrumpido por pequeñas ráfagas de actividad. Emery Brown, un profesor del MIT de ciencias cognitivas y cerebrales, ciencias y tecnologías de la salud, y un anestesista en el Hospital General de Massachusetts, se propuso estudiar la supresión de ráfagas en el cerebro anestesiado y otros estados cerebrales en la esperanza de descubrir un mecanismo fundamental por el que el patrón se da. Dicho conocimiento podría ayudar a científicos a encontrar que tanta supresión de ráfagas es necesaria para la protección cerebral óptima durante hipotermia inducida, cuando este estado es deliberadamente creado.

“Podrías ser capaz de desarrollar una manera mucho más basada en principios para guiar la terapia para usar la supresión de ráfagas en casos de coma médicos”, dijo Brown, autor principal de la revista académica de PNAS. “La pregunta es, ¿cómo sabes que pacientes tienen su cerebro lo suficientemente protegido? ¿Deberían de tener una ráfaga cada segundo? ¿O quizá una cada cinco segundos?”.

Modelando la actividad eléctrica

ShiNung Ching, un postdoctorado en el laboratorio de Brown y actor de la revista académica PNAS, desarrolló un modelo para describir como se da la supresión de ráfagas, basado en el comportamiento de neuronas en el cerebro. El disparo de neuronas está controlado por la actividad en los canales que permiten fluir iones como potasio y sodio dentro y fuera de la célula, alterando su voltaje.
Por cada neurona, “pudimos modelar matemáticamente el flujo de iones dentro y fuera del cuerpo celular, a través de la membrana”, dijo Ching. En este estudio, el equipo combinó muchas neuronas para crear un modelo de una larga red cerebral. Al mostrar como el enfriamiento y ciertas drogas anestésicas reducen el uso del cerebro de ATP (Adenosine triphosphate – la unidad o “moneda” usada para transferencia de energía entre células), los investigadores pudieron generar patrones de supresión de ráfagas consistentes con los que son actualmente vistos en pacientes humanos.

Ésta es la primera vez que las reducciones en actividad metabólica al nivel neuronal han sido vinculadas a la supresión de ráfagas, y sugiere que el cerebro probablemente usa supresión de ráfagas para conservar energía vital durante los tiempos de trauma.

“Lo que es realmente emocionante sobre esto es la idea de que la regulación metabólica de tiendas de energía celular juegan un papel en las dinámicas observadas del electroencefalograma”, dijo Nicholas Schiff, un profesor de neurología y neurociencia en el Colegio Médico Weill Cornell, quien no estuvo involucrado en esta investigación.

El cerebro en desarrollo

Supresión de ráfagas también es vista en bebés nacidos prematuramente. Conforme estos bebés crecen, sus patrones cerebrales se mueven hacia el patrón continuo normal. Brown especula que en infantes prematuros, el cerebro prodría estarse protegiendo al conservar energía.

“Cuando miras como se desarrollan estos niños, podemos fácilmente comenzar a sugerir maneras de monitorear su mejora cuantitativamente. Entonces los mismos algoritmos que usamos para monitorear la supresión de ráfagas en el cuarto de operaciones podrían ser usadas para monitorear la desaparición de la supresión de ráfagas en estos niños”, dijo Brown.

Dicho rastreo podría ayudar a doctores a determinar si infantes prematuros se están moviendo hacia un desarrollo normal o si tienen un desorden cerebral subyacente que podría no ser diagnosticado, dijo Ching.

En estudios futuros, los investigadores planean estudiar infantes prematuros así como pacientes cuyos cerebros son enfriados y aquellos con comas inducidos. Dichos estudios podrían revelar que tanta supresión de ráfagas es suficiente para proteger el cerebro en esas situaciones vulnerables.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu (en inglés)

Errores metabólicos pueden significar la muerte para el ADN

Adenina
Adenina

Muchas funciones celulares críticas dependen de una clase de moléculas llamadas purinas, que forma la mitad de los bloques de construcción del ADN y el ARN (ácido ribonucleico), y son los mayores componentes de los químicos que guardan la energía de las células. Las células mantienen un control rígido sobre su suministro de purina, y cualquier alteración de eso puede tener serias consecuencias.

Por Anne Trafton, MIT News Office. Original (en inglés).

Los ingenieros biológicos del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) midieron precisamente los efectos de errores en sistemas para la producción y el consumo de la purina. Encontraron que defectos en las enzimas que controlan estos procesos pueden alterar severamente las secuencias de ADN de las células, lo que podría explicar por que la gente que carga ciertas variantes genéticas de enzimas metabólicas de purina tienen un riesgo más alto para algunos tipos de cáncer.

El ADN consiste usualmente de una secuencia de cuatro bloques de construcción o nucleótidos: adenina (A), guanina (G), citosina (C) y timina (T). La guanina y la adenina son purinas, y cada una tiene un pariente estructural cercano que puede tomar su lugar en el ADN o el ARN. Cuando estos nucleótidos, conocidos como xantina e hipoxantina, son insertados por error en el ADN, causan mutaciones. También pueden interferir con las funciones del mensajero ARN (mARN), que carga las instrucciones del ADN al resto de la célula, y las moléculas de ARN que traducen mARN en proteínas.

“Una célula necesita controlar la concentración muy cuidadosamente para que tenga justo la información correcta de bloques de construcción cuando está sintetizando ADN. Si la célula tiene un desbalanceo en la concentración de estos nucleótidos, va a cometer un error”, dijo Peter Dedon, un profesor de ingeniería biológica en el MIT y autor del estudio, el cual aparecerá en la revista científica Proceedings of the National Academy of Sciences (PNAS) la semana del 30 de Enero.

Además de formar la columna vertebral del ADN y el ARN, las purinas también son un componente principal del adenosín trifosfato (ATP), la energía concurrente de la célula; de otras moléculas que manejan el flujo de energía de la célula; y de pequeños cofactores químicos requeridos para la actividad de miles de enzimas celulares.

Metabolismo anormal

Docenas de enzimas están involucradas en el metabolismo de purina, y se sabe hace mucho que el mal funcionamiento de esas enzimas pueden tener efectos adversos. Por ejemplo, perder una enzima que salva purina, que recupera nucleótidos de ADN y ARN degradados, lleva a niveles sanguíneos altos de ácido úrico, causando gota y piedras en los riñones – y en casos extremos, un desorden neurológico llamado síndrome de Lesch-Nyhan. Perder otra enzima de salvado produce una enfermedad llamada inmunodeficiencia combinada severa.

El metabolismo anormal de la purina también puede llevar a efectos secundarios para la gente tomando una clase de drogas llamadas tiopurinas. En algunas personas, estas drogas, comúnmente usadas para tratar la leucemia, el linfoma, la enfermedad de Crohn, artritis reumatoide y el rechazo de órganos trasplantados, puede ser metabolizada en compuestos tóxicos. Pruebas genéticas pueden revelar que pacientes deben evitar drogas de tiopurina.

En el nuevo estudio, Dedon y sus colegas alteraron alrededor de media docena enzimas que metabolizan purina en E. coli y levadura. Después de alterar las enzimas, los investigadores midieron cuanta xantina e hipoxantina fue integrada en el ADN y el ARN de las células, usando una técnica de espectrometría de masas altamente sensible que habían desarrollado previamente para estudiar el daño causado al ADN y el ARN por inflamación.

Encontraron que las enzimas que no funcionan bien podrían producir incrementos dramáticos – hasta 1,000 veces más – en las cantidades de hipoxantina incorporada al ADN y el ARS en lugar de la adenina. Sin embargo, vieron poco cambio en la cantidad de xantina insertada en lugar de guanina.

Chris Mathews, un profesor emérito de bioquímica y biofísica en la Universidad Estatal de Oregon, dijo que el encuentro podría ayudar a los investigadores a entender mejor como los defectos en el metabolismo de la purina causan enfermedades. “Esta revista académica abre la puerta a numerosos estudios – por ejemplo, viendo los efectos biológicos resultantes de la acumulación de bases anormales en el ADN y ARN”, dijo Mathews, quien no estuvo involucrado en este estudio.

Científicos han encontrado una buena cantidad de variaciones genéticas en las enzimas que metabolizan purina en humanos, por lo que el equipo planea investigar el impacto de esas variantes humanas de inserción de xantina e hipoxantina en el ADN. También están interesados en estudiar el metabolismo de los otros dos nucleótidos encontrados en el ADN, citosina y timina, los que son pirimidinas.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)