Mezcla de nutrientes mejora la memoria en pacientes con Alzheimer temprano

Sinapsis, una conexión entre células cerebrales.
Sinapsis, una conexión entre células cerebrales.
Imagen: Christine Daniloff

En pruebas clínicas, una mezcla desarrollada en el MIT parece ayudar a vencer la pérdida de conexiones entre las células del cerebro.

Anne Trafton, MIT News Office. Original (en inglés).

Una prueba clínica de un tratamiento para la enfermedad de Alzheimer desarrollado en el MIT ha encontrado que el cóctel de nutrientes puede mejorar la memoria en pacientes con Alzheimer temprano. Los resultados confirman y expanden los descubrimientos de una prueba anterior del suplemento nutricional, que está desarrollado para promover nuevas conexiones entre células cerebrales.

Los pacientes de Alzheimer gradualmente pierden esas conexiones, conocidas como sinapsis, llevando a la pérdida de memoria y otras deficiencias cognitivas. El suplemento, conocido como Souvenaid, parece estimular el crecimiento de nuevas sinapsis, dice Richard Wurtman, el distinguido profesor en el MIT quien inventó la mezcla de nutrientes.

“Quieres aumentar el número de sinapsis, no mediante alentar su degradación – aunque por supuesto también te encantaría hacer eso – sino incrementando la formación de sinapsis,” dice Wurtman.

Para hacer eso, a Wurtman se le ocurrió hacer una mezcla de tres compuestos dietarios naturales: colina, uridina y ácido docosahexaenoico (DHA) de la serie omega-3. La colina puede ser encontrado en una variedad de fuentes, incluyendo el pescado, huevos, lino y carne de animales que se alimentan de pasto. La uridina es producida por el hígado y el riñón, y está presente en algunas comidas como un componente del ácido ribonucleico (ARN).

Estos nutrientes son precursores de las moléculas lípidas que, junto con proteínas específicas, forman las membranas de las células cerebrales, lo que forma sinapsis. Para ser efectivo, los tres precursores deben de ser administrados juntos.

Resultados de la prueba clínica, conducidos en Europa, aparecen en la edición del 10 de julio del Diario de la Enfermedad de Alzheimer (Journal of Alzheimer’s Disease). Los nuevos hallazgos son alentadores por que muy pocas pruebas clínicas han producido mejoras consistentes en los pacientes de Alzheimer, dice Jeffrey Cummings, director del Centro Lou Ruvo para la Salud Cerebral de la Clínica de Cleveland.

“La pérdida de memoria es la característica central del Alzheimer, así que algo que mejora la memoria sería de gran interés,” dice Cummings, quien no fue parte del equipo investigador.

Los planes para el lanzamiento comercial del suplemento no están finalizados, de acuerdo a Nutricia, la compañía probando y comercializando Souvenaid, pero probablemente esté disponible en Europa primero. Nutricia es la división especializada en el cuidado de la salud de la compañía de alimentos Danone, conocida como Dannon en los Estados Unidos.

Formando conexiónes

Espinas Dendríticas
Espinas Dendríticas

A Wurtman se le ocurrió por primera vez la idea de enfocarse en la pérdida de sinapsis para combatir el Alzheimer hace alrededor de 10 años. En estudios animales, el mostró que este cóctel dietario aumentaba el número de espinas dendríticas, o pequeños afloramientos en las neuronas membranas, encontradas en las células cerebrales. Estas espinas son necesarias para formar nuevas sinapses entre neuronas.

Tras los exitosos estudios animales, Philip Schelten, director del Centro de Alzheimer en el Centro Médico Universitario UV en Amsterdam, llevó a cabo una prueba clínica en Europa involucrando a 225 pacientes con Alzheimer leve. Los pacientes bebieron Souvenaid o una bebida de control diariamente por tres meses.

Ese estudio, reportado por primera vez en el 2008, encontró que 40 por ciento de los pacientes que consumieron la bebida mejoraron en una prueba de memoria verbal, mientras que 24 por ciento de los pacientes que recibieron la bebida de control mejoraron su rendimiento.

El nuevo estudio, desarrollado en varios países Europeos y supervisado por Scheltes como investigador principal, siguió a 259 pacientes por seis meses. Los pacientes, ya sea que tomaran Souvenaid o un placebo, mejoraron el desempeño de su memoria verbal durante los primeros tres meses, pero los pacientes con placebo se deterioraron durante los siguientes tres meses, mientras que los pacientes con Souvenaid continuaron mejorando. Para esta prueba, los investigadores usaron pruebas de memoria más exhaustivas tomadas de la batería de pruebas neuropsicológicas, comúnmente usadas paras evaluar a los pacientes de Alzheimer en investigación clínica.

Los pacientes mostraron una alta taza de conformidad: Alrededor del 97 por ciento de los pacientes siguieron el régimen a lo largo del estudio, y ningún efecto secundario serio fue visto.

Ambas pruebas clínicas fueron patrocinadas por Nutricia. El MIT ha patentado la mezcla de nutrientes usados en el estudio, y Nutricia tiene la licencia exclusiva sobre la patente.

Patrones cerebrales

Tomografía por emisión de positrones
Tomografía por emisión de positrones

En el nuevo estudio, los investigadores usaron electroencefalografía (EEG – Electroencephalography) para medir como los patrones de actividad cerebral de los pacientes cambiaron a través del estudio. Encontraron que conforme las pruebas progresaban, los cerebros de los pacientes recibiendo suplementos comenzaron a cambiar de patrones típicos de demencia a patrones más normales. Debido a que los patrones en un EEG reflejan la actividad sináptica, esto sugiere que la función sináptica aumentó como resultado del tratamiendo, dicen los investigadores.

Los pacientes entrando en este estudio estaban el las etapas tempranas de la enfermedad de Alzheimer, obteniendo un promedio de 25 en una escala de demencia que va del 1 al 30, con el 30 siendo lo normal. Una prueba previa encontró que el cóctel suplemento no funciona en pacientes con Alzheimer en una etapa más avanzada. Esto tiene sentido, dice Wurtman, por que los pacientes con demencia más avanzada probablemente ya han perdido muchas neuronas, así que no pueden formar nuevas sinapsis.

Una prueba de dos años involucrando pacientes que no tienen Alzheimer, pero que están comenzando a mostrar discapacidad cognitiva, está ahora en proceso. Si la bebida parece ayudar, podría ser usada en gente que da positivo para señales tempranas de Alzheimer, antes de que los síntomas aparezcan, dice Wurtman. Dichas pruebas, que incluyen escaneo PET (Positron Emission Tomography – Tomografía por Emisión de Positrones) del hipocampo, son raramente realizadas ahora por que no hay buenos tratamientos de Alzheimer disponibles.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Robots que revelan el funcionamiento interno de células en el cerebro

Robots energía células
Imagen: Boyden Lab

Un nuevo método ofrece una manera automatizada de grabar la actividad eléctrica dentro de las neuronas en el cerebro viviente.

Anne Trafton, MIT News Office. Original (en inglés).

Ganar acceso al funcionamiento interno de una neurona en el cerebro viviente ofrece una riqueza de información útil: sus patrones de actividad eléctrica, su forma, incluso un perfil de qué genes están activados en un momento dado. Sin embargo, alcanzar esta información es una tarea tan dolorosa que es considerada una forma de arte; es tan difícil de obtener que solo un pequeño número de laboratorios en el mundo lo practican.

Pero eso podría cambiar pronto: Investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y Georgia Tech han desarrollado una manera de automatizar el proceso de encontrar y grabar información de neuronas en el cerebro humano. Los investigadores han mostrado que un brazo robótico guiado por un algoritmo computacional detector de células puede identificar y grabar de las neuronas en el cerebro viviente de un ratón con mejor precisión y velocidad que un experimentador humano.

El nuevo proceso automatizado elimina la necesidad de meses de entrenamiento y provee información buscada por mucho tiempo sobre las actividades de células vivientes. Usando esta técnica, científicos podrían clasificar los miles de diferentes tipos de células en el cerebro, mapear como se conectan una con la otra y encontrar cómo las células enfermas difieren de las células normales.

El proyecto es una colaboración entre los laboratorios de Ed Boyden, el profesor asociado de desarrollo de carreras de ingeniería biológica y ciencias cerebrales y cognitivas en el MIT, y Craig Forest, profesor asistente de ingeniería mecánica en Georgia Tech.

“Nuestro equipo ha sido interdisciplinario desde el comienzo, y esto nos ha permitido traer los principios de diseño de máquinas de precisión para apoyar el estudio del cerebro viviente”, dice Forest. Su estudiante graduado, Suhasa Kodandaramaiah, pasó los últimos dos años como estudiante visitante del MIT, y es el autor líder del estudio, que apareció en la edición del 6 de mayo de Nature Methods.

El método podría ser particularmente útil en estudiar enfermedades del cerebro como esquizofrenia, enfermedad de Parkinson, autismo y epilepsia, dice Boyden. “En todos los casos, una descripción molecular de una célula que está integrada con [sus] propiedades eléctricas y de circuito … ha sido elusiva”, dice Boyden, quien es un miembro del Laboratorio de Medios del MIT y el Instituto McGovern para Investigación del Cerebro. “Si realmente podemos describir cómo las enfermedades cambian moléculas en células específicas dentro del cerebro viviente, podría permitir que se encuentren drogas con una puntería más precisa”.

Automatización

Kodandaramaiah, Boyden y Forest se propusieron automatizar una técnica de 30 años de edad conocida como fijación de membranas de célula completa (whole-cell patch clamping), que involucra traer una pequeña pipeta de vidrio hueco en contacto con la membrana celular de una neurona, entonces abriendo un pequeño poro en la membrana para grabar la actividad eléctrica dentro de la célula. Esta habilidad usualmente toma varios meses aprender a un estudiante graduado o posdoctorado.

Kodandaramaiah pasó alrededor de cuatro meses aprendiendo la técnica de fijación de membrana manual, dándole una apreciación de su dificultad. “Cuando me volví razonablemente bueno en eso, pude sentir que aunque es una forma de arte, puede ser reducida a un conjunto de tareas y decisiones estereotipadas que podrían ser ejecutadas por un robot”, dijo.

Para ese fin, Kadandaramaiah y sus colegas construyeron un brazo robótico que baja una pipeta de vidrio en el cerebro de un ratón anestesiado con una precisión micrométrica. Conforme se mueve, la pipeta monitorea una propiedad llamada impedancia eléctrica – una medición sobre qué tan difícil le es a la electricidad fluir fuera de la pipeta. Si no hay células alrededor, la electricidad fluye y la impedancia es baja. Cuando la punta toca una célula, la electricidad no puede fluir tan bien y la impedancia sube.

La pipeta toma dos pasos micrómetricos, midiendo la impedancia 10 veces por segundo. Una vez que detecta una célula, puede parar instantáneamente, previniendo que atraviese la membrana. “Esto es algo que un robot puede hacer que un humano no puede”, dice Boyden.

Una vez que la pipeta encuentra una célula, aplica succión para formar un sello con la membrana de la célula. Entonces, el electrodo puede atravesar la membrana para grabar la actividad eléctrica interna de la célula. El sistema robótico puede detectar células con un 90 por ciento de precisión, y establecer una conexión con las células detectadas alrededor del 40 por ciento del tiempo.

Los investigadores también mostraron que su método puede ser usado para determinar la forma de la células inyectando un colorante; trabajan ahora en extraer los contenidos de la célula para obtener su perfil genético.

Karel Svoboda, un líder grupal en el Campus Janelia Farm del Instituto Médico Hughes, dice que cree que la tecnología será ámpliamente adoptada, ya que remueve las barreras que han prevenido a más investigadores de usar una grabación de fijación de membrana. “Los humanos pueden hacerlo tan bien como la máquina, pero es extremadamente aburrido para una persona. Te cansas, comienzas a cometer errores. El robot puede continuar”, dice Svoboda, quien no fue parte del equipo investigador.

El desarrollo de la nueva tecnología fue patrocinado principalmente por los Institutos Nacionales de la Salud, la Fundación Nacional de Ciencia y el Laboratorio de Medios del MIT.

Una nueva era para la robótica

Los investigadores trabajan ahora en aumentar el número de electrodos para poder grabar de múltiples neuronas a la vez, potencialmente permitiéndoles determinar como las diferentes partes del cerebro están conectadas.

También se encuentran trabajando con colaboradores para comenzar a clasificar los miles de tipos de neuronas encontradas en el cerebro. Esta “lista de partes” del cerebro identificaría neuronas no solo por su forma – que es el método más común de clasificación – sino también por su actividad eléctrica y su perfil genético.

“Si realmente quieres saber que es una neurona, puedes ver la forma, y puedes ver como dispara. Entonces, si sacas la información genética, realmente puedes saber que está ocurriendo”, dice Forest. “Ahora conoces todo. Ese es el cuadro completo”.

Boyden dice que el cree que esto es solo el comienzo de usar robots en la neurociencia para estudiar animales vivientes. Un robot como este podría potencialmente ser usado para entregar drogas en puntos apuntados en el cerebro, o para entregar vectores de terapia genética. El espera que también inspirará a neurocientíficos a perseguir otros tipos de automatización robótica – como en optogenética, el uso de luz para perturbar circuitos neurales apuntados y determinar el papel causal que juegan las neuronas en las funciones cerebrales.

La neurociencia es una de las pocas áreas de la biología en la que los robots todavía deben tener un gran impacto, dice Boyden. “El proyecto genoma fue hecho por humanos y un set gigantesco de robots que harían toda la secuencia del genoma. En la evolución dirigida o en biología sintética, los robots hacen mucha de la biología molecular”, dice. “En otras partes de la biología, los robots son esenciales”.

Otros coautores incluyen al estudiante graduado del MIT Giovanni Talei Franzesi y el posdoctorado del MIT Bian Y. Chow.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/(en inglés)

Genes que brincan en el cerebro aseguran que incluso los gemelos idénticos sean diferentes

Cerebro zona principios
© flickr.com / Gaetan Lee

Todos los cerebros humanos son diferentes, pero, ¿de dónde proviene la diversidad en el interconectado de las más de mil millones de neuronas con más de 100 billones de interconexiones?

Las variaciones que heredamos de los genes de nuestros padres podrían jugar un papel. Sin embargo, aún gemelos idénticos criados por los mismos padres pueden tener marcadas diferencias en su función mental, en las características de su comportamiento, y en el riesgo de enfermedades mentales o enfermedades neurodegenerativas. De hecho, ratones criados para ser idénticos genéticamente y manejados exactamente de la misma manera en el laboratorio muestran diferencias en su habilidad para aprender, evasión del miedo y respuestas para el estrés aún con la edad, género y cuidado se mantienen constantes. Algo más debe estar sucediendo.

Algunos creen que esto es debido a la epigenética, pero investigadores han encontrado sospechosos que parecen operar dentro del cerebro principalmente: genes que brincan. Dichos genes, encontrados virtualmente en todas las especies, pueden pegar copias de si mismos en otras partes del genoma (ADN en el núcleo) y alterar el funcionamiento, creando diferencias sutiles en la habilidad para el aprendizaje, rasgos de personalidad y susceptibilidad a problemas neurológicos. Estos elementos móviles podrían existir como un mecanismo de defensa contra antiguos invasores. Así mismo, estos genes que brincan podrían tener un papel en los desórdenes psiquiátricos que nos afectan, pero el beneficio de este mecanismo podría por mucho superar los riesgos.

El estudio fue conducido por Fred H. Gage, un profesor especializado en como se generan las neuronas en el Laboratorio de Genética del Instituto Salk para Estudios Biológicos en La Jolla, California. El coautor es Alysson R. Muotri, quién es profesora asistente del departamento de pediatría y medicina celular y molecular en la Universidad de California, en San Diego.

Más información
http://www.scientificamerican.com/ (en inglés)

Neurocientíficos vinculan patrones cerebro-onda al consumo de energía

Emery Brown y ShiNung Ching
Emery Brown y ShiNung Ching. Imagen: M. Scott Brauer

Un nuevo modelo de actividad neuro-eléctrica podría ayudarle a científicos a entender mejor los estados inactivos del cerebro como el coma.

Por Anne Trafton, MIT News Office. Original (en inglés).

Diferentes estados del cerebro producen diferentes ondas de actividad eléctrica, con el cerebro alerta, el cerebro relajado y el cerebro durmiendo produciendo patrones en electroencefalogramas (EEG) fácilmente reconocibles. Estos patrones cambian aún más dramáticamente cuando el cerebro entra en ciertos estados inactivos profundos durante anestesia general o un coma.

Investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y de la Universidad de Harvard descubrieron como uno de estos estados inactivos, conocido como supresión de ráfagas (burst suppression), se da. El encuentro, reportado en la edición en línea de PNAS (Proceedings of the National Academy of Sciences) la semana del 6 de febrero, podría ayudar a los investigadores a monitorear mejor otros estados en los que ocurre la supresión de ráfagas. Por ejemplo, también es visto en los cerebros de víctimas de ataques cardíacos que son enfriados para prevenir daño cerebral debido a la privación de oxígeno, y en los cerebros de pacientes deliberadamente colocados en comas médicos para tratar una lesión cerebral traumática o ataques intratables.

Durante la supresión de ráfagas, el cerebro está callado por varios segundos a la vez, interrumpido por pequeñas ráfagas de actividad. Emery Brown, un profesor del MIT de ciencias cognitivas y cerebrales, ciencias y tecnologías de la salud, y un anestesista en el Hospital General de Massachusetts, se propuso estudiar la supresión de ráfagas en el cerebro anestesiado y otros estados cerebrales en la esperanza de descubrir un mecanismo fundamental por el que el patrón se da. Dicho conocimiento podría ayudar a científicos a encontrar que tanta supresión de ráfagas es necesaria para la protección cerebral óptima durante hipotermia inducida, cuando este estado es deliberadamente creado.

“Podrías ser capaz de desarrollar una manera mucho más basada en principios para guiar la terapia para usar la supresión de ráfagas en casos de coma médicos”, dijo Brown, autor principal de la revista académica de PNAS. “La pregunta es, ¿cómo sabes que pacientes tienen su cerebro lo suficientemente protegido? ¿Deberían de tener una ráfaga cada segundo? ¿O quizá una cada cinco segundos?”.

Modelando la actividad eléctrica

ShiNung Ching, un postdoctorado en el laboratorio de Brown y actor de la revista académica PNAS, desarrolló un modelo para describir como se da la supresión de ráfagas, basado en el comportamiento de neuronas en el cerebro. El disparo de neuronas está controlado por la actividad en los canales que permiten fluir iones como potasio y sodio dentro y fuera de la célula, alterando su voltaje.
Por cada neurona, “pudimos modelar matemáticamente el flujo de iones dentro y fuera del cuerpo celular, a través de la membrana”, dijo Ching. En este estudio, el equipo combinó muchas neuronas para crear un modelo de una larga red cerebral. Al mostrar como el enfriamiento y ciertas drogas anestésicas reducen el uso del cerebro de ATP (Adenosine triphosphate – la unidad o “moneda” usada para transferencia de energía entre células), los investigadores pudieron generar patrones de supresión de ráfagas consistentes con los que son actualmente vistos en pacientes humanos.

Ésta es la primera vez que las reducciones en actividad metabólica al nivel neuronal han sido vinculadas a la supresión de ráfagas, y sugiere que el cerebro probablemente usa supresión de ráfagas para conservar energía vital durante los tiempos de trauma.

“Lo que es realmente emocionante sobre esto es la idea de que la regulación metabólica de tiendas de energía celular juegan un papel en las dinámicas observadas del electroencefalograma”, dijo Nicholas Schiff, un profesor de neurología y neurociencia en el Colegio Médico Weill Cornell, quien no estuvo involucrado en esta investigación.

El cerebro en desarrollo

Supresión de ráfagas también es vista en bebés nacidos prematuramente. Conforme estos bebés crecen, sus patrones cerebrales se mueven hacia el patrón continuo normal. Brown especula que en infantes prematuros, el cerebro prodría estarse protegiendo al conservar energía.

“Cuando miras como se desarrollan estos niños, podemos fácilmente comenzar a sugerir maneras de monitorear su mejora cuantitativamente. Entonces los mismos algoritmos que usamos para monitorear la supresión de ráfagas en el cuarto de operaciones podrían ser usadas para monitorear la desaparición de la supresión de ráfagas en estos niños”, dijo Brown.

Dicho rastreo podría ayudar a doctores a determinar si infantes prematuros se están moviendo hacia un desarrollo normal o si tienen un desorden cerebral subyacente que podría no ser diagnosticado, dijo Ching.

En estudios futuros, los investigadores planean estudiar infantes prematuros así como pacientes cuyos cerebros son enfriados y aquellos con comas inducidos. Dichos estudios podrían revelar que tanta supresión de ráfagas es suficiente para proteger el cerebro en esas situaciones vulnerables.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu (en inglés)

Se descubre la ruta metabólica por la que se transmite el Alzheimer

Taupatía
Tauopatía

Dos nuevos estudios mostraron que la enfermedad de Alzheimer parece propagarse de célula cerebral en célula cerebral de la misma manera que lo hace una infección. Pero no son virus o bacterias, lo que se propaga es una proteína distorsionada llamada tau. Este sorprendente descubrimiento tiene implicaciones inmediatas para el desarrollo de tratamientos. Los investigadores sospechan que también otras enfermedades degenerativas del cerebro como la enfermedad de Parkinson pueden propagarse de forma similar. Lo que estos estudios indican es que la enfermedad de Alzheimer podría detenerse abruptamente previniendo la transmisión de célula a célula, quizá con un anticuerpo que bloquee la proteína tau.

Los investigadores sabían que algo iniciaba la enfermedad de Alzheimer. El candidato más probable es una proteína conocida como beta-amiloide, la cual se acumula en el cerebro de los pacientes de Alzheimer, formando placas duras. Pero la proteína beta-amiloide es muy diferente de la proteína tau, es secretada en grupos fuera de las células y los investigadores nunca han encontrado evidencia de que la amiloide se propague de célula en célula en una red. Pero, la amiloide crea lo que podría considerarse como un mal vecindario, entonces viene la proteína tau y mata las células.

Los estudios en humanos no podían determinar si esta hipótesis era correcta. Los estudios involucraban autopsias y obtención de imágenes del cerebro que eran indirectas e inconclusas. Para averiguar si la proteína tau anormal era la responsable por la propagación de la enfermedad de Alzheimer, se crearon ratones modificados genéticamente capaces de generar proteínas tau humanas anormales.

Estos ratones producían la proteína tau humana en un área del cerebro conocida como corteza entorrinal, una delgada capa de tejido detrás de las orejas. Si al pasar el tiempo la enfermedad de Alzheimer solo se localizaba en esta parte del cerebro capaz de producir la proteína tau humana anormal, esto habría descartado la propagación de las proteínas y por ende de la enfermedad por la red neuronal de la enfermedad.

Pero la enfermedad de Alzheimer, que comenzó en la corteza entorrinal como era esperado, se esparció hacia el medio del cerebro, donde las células comenzaron a morir por la enfermedad de Alzheimer. Como era de esperarse, las proteínas tau fueron encontradas ahí. Y también como era de esperarse, las células de la corteza entorrinal en los ratones comenzaron a morir, llenas de proteínas tau enredadas.

Durante los dos años siguientes, la muerte celular y la destrucción se expandió hacia afuera a otras células por el mismo medio. Ya que esas células del cerebro no podían producir tau humano anormal, la única manera en que estas células podrían obtener la proteína era al transmitirse de célula nerviosa en célula nerviosa hasta llegar a las otras áreas. Aunque este estudio fue en ratones, los investigadores esperan que el mismo fenómeno ocurra en humanos por que el ratón tenía el gen tau humano y la onda progresiva de muerte celular coincide con lo visto en la gente con la enfermedad de Alzheimer.

Ya que la proteína tau se propaga de neurona a neurona, podría ser necesario bloquear la producción de beta-amiloide, que parece iniciar la enfermedad, y la propagación de tau, que la continúa, para parar la enfermedad de Alzheimer. Los investigadores se preguntan ahora si otras enfermedades degenerativas se propagan a través del cerebro por que las proteínas pasan de célula nerviosa a célula nerviosa. Se ha visto evidencia de que esto podría pasar con la enfermedad de Parkinson.

Detalles técnicos

Las tauopatías son una clase de enfermedades neurodegenerativas asociadas con la agregación patológica de la proteína tau en el cerebro humano. La enfermedad más conocida de este mal es la enfermedad de Alzheimer (EA). En pacientes con EA, la enfermedad comienza en la corteza entorrinal (EC por sus siglas en inglés de entorhinal cortex) y se propaga anatómicamente en un patrón definido. Para probar si la patología que comienza en la EC se propaga a través del cerebro siguiendo circuitos conectados sinápticamente, los investigadores crearon ratones transgénicos con proteínas tau humanas en la corteza entorrinal y examinaron la distribución de la patología de tau en diferentes momentos.

En ratones relativamente jóvenes (de 10 a 11 meses de edad, la edad prometio de un ratón es de 4 años), el tau humano estaba presente en algunos cuerpos celulares, pero principalmente fue observado en axones (las largas y delgadas prolongaciones de las neuronas) dentro de las capas superficiales de la corteza entorrinal mediana y lateral, y en las zonas terminales de la ruta biológica perforante.

Pero en ratones viejos (con más de 22 meses de edad), intensa inmunoreactividad de tau humano era detectable no solo en las capas superficiales de la corteza entorrinal, sino también en el subículo, en un número sustancial de neuronas en el hipocampo piramidal, y en las células granulares de circunvolución dentada. Neuronas inmunoreactivas dispersas también fueron vistas en las capas más profundas de la corteza entorrinal y en perirrinal y en la corteza somatosensorial secundaria.

Relocalización de axones tau a compartimientos somato-dendríticos y la propagación de tauopatía a regiones fuera de la corteza entorrinal demostró que la propagación de la patología desde la corteza entorrinal se lleva a cabo por un mecanismo trans-sináptico de dispersión por medio de redes conectadas anatómicamente, entre neuronas vulnerables.

Imagen
Tauopatía – National Institute on Aging (Instituto Nacional en Envejecimiento) – Dominio público.

Más información
http://www.nytimes.com/ (en inglés)
Uno de los estudios (en inglés)
Centro de Investigación de la Enfermedad de Alzheimer (en inglés, llevaron a cabo el otro estudio pero no ha sido publicado)