Robots energía células
Imagen: Boyden Lab

Un nuevo método ofrece una manera automatizada de grabar la actividad eléctrica dentro de las neuronas en el cerebro viviente.

Anne Trafton, MIT News Office. Original (en inglés).

Ganar acceso al funcionamiento interno de una neurona en el cerebro viviente ofrece una riqueza de información útil: sus patrones de actividad eléctrica, su forma, incluso un perfil de qué genes están activados en un momento dado. Sin embargo, alcanzar esta información es una tarea tan dolorosa que es considerada una forma de arte; es tan difícil de obtener que solo un pequeño número de laboratorios en el mundo lo practican.

Pero eso podría cambiar pronto: Investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y Georgia Tech han desarrollado una manera de automatizar el proceso de encontrar y grabar información de neuronas en el cerebro humano. Los investigadores han mostrado que un brazo robótico guiado por un algoritmo computacional detector de células puede identificar y grabar de las neuronas en el cerebro viviente de un ratón con mejor precisión y velocidad que un experimentador humano.

El nuevo proceso automatizado elimina la necesidad de meses de entrenamiento y provee información buscada por mucho tiempo sobre las actividades de células vivientes. Usando esta técnica, científicos podrían clasificar los miles de diferentes tipos de células en el cerebro, mapear como se conectan una con la otra y encontrar cómo las células enfermas difieren de las células normales.

El proyecto es una colaboración entre los laboratorios de Ed Boyden, el profesor asociado de desarrollo de carreras de ingeniería biológica y ciencias cerebrales y cognitivas en el MIT, y Craig Forest, profesor asistente de ingeniería mecánica en Georgia Tech.

“Nuestro equipo ha sido interdisciplinario desde el comienzo, y esto nos ha permitido traer los principios de diseño de máquinas de precisión para apoyar el estudio del cerebro viviente”, dice Forest. Su estudiante graduado, Suhasa Kodandaramaiah, pasó los últimos dos años como estudiante visitante del MIT, y es el autor líder del estudio, que apareció en la edición del 6 de mayo de Nature Methods.

El método podría ser particularmente útil en estudiar enfermedades del cerebro como esquizofrenia, enfermedad de Parkinson, autismo y epilepsia, dice Boyden. “En todos los casos, una descripción molecular de una célula que está integrada con [sus] propiedades eléctricas y de circuito … ha sido elusiva”, dice Boyden, quien es un miembro del Laboratorio de Medios del MIT y el Instituto McGovern para Investigación del Cerebro. “Si realmente podemos describir cómo las enfermedades cambian moléculas en células específicas dentro del cerebro viviente, podría permitir que se encuentren drogas con una puntería más precisa”.

Automatización

Kodandaramaiah, Boyden y Forest se propusieron automatizar una técnica de 30 años de edad conocida como fijación de membranas de célula completa (whole-cell patch clamping), que involucra traer una pequeña pipeta de vidrio hueco en contacto con la membrana celular de una neurona, entonces abriendo un pequeño poro en la membrana para grabar la actividad eléctrica dentro de la célula. Esta habilidad usualmente toma varios meses aprender a un estudiante graduado o posdoctorado.

Kodandaramaiah pasó alrededor de cuatro meses aprendiendo la técnica de fijación de membrana manual, dándole una apreciación de su dificultad. “Cuando me volví razonablemente bueno en eso, pude sentir que aunque es una forma de arte, puede ser reducida a un conjunto de tareas y decisiones estereotipadas que podrían ser ejecutadas por un robot”, dijo.

Para ese fin, Kadandaramaiah y sus colegas construyeron un brazo robótico que baja una pipeta de vidrio en el cerebro de un ratón anestesiado con una precisión micrométrica. Conforme se mueve, la pipeta monitorea una propiedad llamada impedancia eléctrica – una medición sobre qué tan difícil le es a la electricidad fluir fuera de la pipeta. Si no hay células alrededor, la electricidad fluye y la impedancia es baja. Cuando la punta toca una célula, la electricidad no puede fluir tan bien y la impedancia sube.

La pipeta toma dos pasos micrómetricos, midiendo la impedancia 10 veces por segundo. Una vez que detecta una célula, puede parar instantáneamente, previniendo que atraviese la membrana. “Esto es algo que un robot puede hacer que un humano no puede”, dice Boyden.

Una vez que la pipeta encuentra una célula, aplica succión para formar un sello con la membrana de la célula. Entonces, el electrodo puede atravesar la membrana para grabar la actividad eléctrica interna de la célula. El sistema robótico puede detectar células con un 90 por ciento de precisión, y establecer una conexión con las células detectadas alrededor del 40 por ciento del tiempo.

Los investigadores también mostraron que su método puede ser usado para determinar la forma de la células inyectando un colorante; trabajan ahora en extraer los contenidos de la célula para obtener su perfil genético.

Karel Svoboda, un líder grupal en el Campus Janelia Farm del Instituto Médico Hughes, dice que cree que la tecnología será ámpliamente adoptada, ya que remueve las barreras que han prevenido a más investigadores de usar una grabación de fijación de membrana. “Los humanos pueden hacerlo tan bien como la máquina, pero es extremadamente aburrido para una persona. Te cansas, comienzas a cometer errores. El robot puede continuar”, dice Svoboda, quien no fue parte del equipo investigador.

El desarrollo de la nueva tecnología fue patrocinado principalmente por los Institutos Nacionales de la Salud, la Fundación Nacional de Ciencia y el Laboratorio de Medios del MIT.

Una nueva era para la robótica

Los investigadores trabajan ahora en aumentar el número de electrodos para poder grabar de múltiples neuronas a la vez, potencialmente permitiéndoles determinar como las diferentes partes del cerebro están conectadas.

También se encuentran trabajando con colaboradores para comenzar a clasificar los miles de tipos de neuronas encontradas en el cerebro. Esta “lista de partes” del cerebro identificaría neuronas no solo por su forma – que es el método más común de clasificación – sino también por su actividad eléctrica y su perfil genético.

“Si realmente quieres saber que es una neurona, puedes ver la forma, y puedes ver como dispara. Entonces, si sacas la información genética, realmente puedes saber que está ocurriendo”, dice Forest. “Ahora conoces todo. Ese es el cuadro completo”.

Boyden dice que el cree que esto es solo el comienzo de usar robots en la neurociencia para estudiar animales vivientes. Un robot como este podría potencialmente ser usado para entregar drogas en puntos apuntados en el cerebro, o para entregar vectores de terapia genética. El espera que también inspirará a neurocientíficos a perseguir otros tipos de automatización robótica – como en optogenética, el uso de luz para perturbar circuitos neurales apuntados y determinar el papel causal que juegan las neuronas en las funciones cerebrales.

La neurociencia es una de las pocas áreas de la biología en la que los robots todavía deben tener un gran impacto, dice Boyden. “El proyecto genoma fue hecho por humanos y un set gigantesco de robots que harían toda la secuencia del genoma. En la evolución dirigida o en biología sintética, los robots hacen mucha de la biología molecular”, dice. “En otras partes de la biología, los robots son esenciales”.

Otros coautores incluyen al estudiante graduado del MIT Giovanni Talei Franzesi y el posdoctorado del MIT Bian Y. Chow.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/(en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment