Bloquear enzima HDAC2 podría revertir síntomas de Alzheimer y restaurar memoria

Alzheimer enzima
Imagen: NIH

Revirtiendo el bloqueo de genes del Alzheimer puede restaurar la memoria y otras funciones cognitivas, según los neurocientíficos la enzima HDAC2 podría ser un buen objetivo para nuevas drogas.

Anne Trafton, MIT News Office Original (en inglés)

Neurocientíficos del MIT (Massachusetts Institute of technology – Instituto de Tecnología de Massachusetts) mostraron que una enzima sobreproducida en los cerebros de los pacientes de Alzheimer crea un bloqueo que apaga genes necesarios para formar nuevas memorias. Además, al inhibir esa enzima en ratones, los investigadores pudieron revertir los síntomas del Alzheimer.

El descubrimiento sugiere que drogas que tengan como objetivo la enzima, conocida como HDAC2, podrían ser un nuevo acercamiento prometedor para tratar la enfermedad, que afecta a 5.4 millones de estadounidenses. El número de víctimas de Alzheimer a nivel mundial se espera que se duplique cada 20 años, y recientemente el presidente Barack Obama programó una fecha límite del 2025 para encontrar un tratamiento efectivo.

Li-Huei Tsai, líder del equipo investigador, dice que los inhibidores de HDAC2 podrían ayudar a alcanzar esa meta, aunque probablemente tomaría al menos 10 años desarrollar y probar dichas drogas.

“Yo realmente avocaría fuertemente por un programa activo para desarrollar agentes que puedan contener la actividad del HDAC2”, dice Tsai, directora del Instituto Picower para el Aprendizaje y la Memoria en el MIT. “La enfermedad es tan devastadora y afecta a tanta gente que animaría a más gente a pensar sobre esto”.

Tsai y sus colegas reportan los descubrimientos en la edición en línea del 29 de Febrero de Nature. El autor líder de la revista académica es Johannes Gräff, un postdoctorado en el Instituto Picower.

Modificación genómica

Las histona deacetilasa (HDAC) son una familia de 11 enzimas que controlan la regulación de genes al modificar histonas – proteínas alrededor de las cuales el ADN es puesto en colas, formando una estructura llamada cromatina. Cuando las HDACs alteran una histona a través de un proceso llamado deacetilación, la cromatina se vuelve más densamente empacada, provocando que los genes en la región tengan menos probabilidades de ser expresadas.

Los inhibidores pueden revertir este efecto, abriendo el ADN y permitiendo que sea transcrito.

En estudios previos, Tsai había mostrado que HDAC2 es un regulador clave de aprendizaje y memoria. En el nuevo estudio, su equipo descubrió que inhibiendo HDAC2 puede revertir los síntomas de Alzheimer en ratones.

Los investigadores encontraron que en ratones con síntomas de Alzheimer, la HDAC2 (pero no los otros HDACs) es muy abundante en el hipocampo, donde se forman las nuevas memorias. HDAC2 era comúnmente encontrada pegada a los genes involucrados en la plasticidad sináptica – la habilidad del cerebro de fortalecer y debilitar conexiones entre neuronas en respuesta a nueva información, lo cual es crítico para formar memorias. En los ratones afectados, esos genes también tenían niveles mucho más bajos de acetilación y expresión.

“No es solo uno o dos genes, es un grupo de genes que trabajan juntos para concertar la diferentes fases de la formación de memorias”, dice Tsai. “Con semejante bloqueo, el cerebro realmente pierde la habilidad de responder rápidamente a la estimulación. Puedes imaginarte que esto creó un enorme problema en términos de la función de aprendizaje y memoria, y quizá otras funciones cognitivas.

Los investigadores entonces apagaron HDAC2 en el hipocampo de ratones con síntomas de Alzheimer, utilizando una molécula llamada “short hairpin RNA” (shRNA), que fue diseñado para unirse al mensajero RNA (Ácido Ribonucleico) – la molécula que carga las instrucciones genéticas del ADN al resto de la célula.

Con la actividad del HDAC2 reducida, la histona deacetilasa regresó, permitiendo que los genes requeridos para la plasticidad sináptica y otros procesos de aprendizaje y memoria sean expresados. En ratones tratados, la densidad sináptica fue enormemente incrementada y el ratón recuperó funciones cognitivas normales.

“Este resultado realmente promueve la noción de que si hay algún agente que pueda selectivamente reducir HDAC2, verá muy benéfico”, dijo Tsai.

Los investigadores también analizaron cerebros de pacientes de Alzheimer que murieron y encontraron niveles elevados de HDAC2 en el hipocampo y la corteza entorrinal, los cuales juegan papeles importantes en el almacenamiento de memoria.

“Lo que es realmente valioso es que [Tsai] identificó que HDAC está involucrada, así como un camino delineado sobre como puede llevar a la memoria afectada. Es un estudio realmente completo y bien ejecutado”, dijo Brett Langley, director de epigenética neuronal en el Centro de Rehabilitación Burke y profesor asistente de neurología en la Escuela Médica Weill Cornell, quien no estuvo involucrado en esta investigación.

Revirtiendo el bloqueo

El descubrimiento puede explicar por que las drogas que limpian las proteínas beta-amiloide de los cerebros de pacientes con Alzheimer solo han ofrecido mejoras modestas, o ninguna, en pruebas clínicas, dice Tsai.

Se sabe que las proteínas beta-amyloide se agrupan en los cerebros de los pacientes de Alzheimer, interfiriendo con un tipo de receptor celular necesitado para plasticidad sináptica. El nuevo estudio muestra que la beta-amiloide también estimula la producción de HDAC2, posiblemente iniciando el bloqueo del aprendizaje y los genes de la memoria.

“Pensamos que una vez que este bloqueo epigenético de expresiones de genes está acomodado, limpiar la beta-amiloide podría no ser suficiente para restaurar la configuración activa de cromatina”, dice Tsai.

El atractivo de los inhibidores de HDAC2, dice Tsai, es que podrían revertir los síntomas incluso después de que el bloqueo está bien establecido. Sin embargo, se requiere de mucho más desarrollo de drogas antes de que dicho compuesto pueda entrar a la fase de pruebas clínicas. “Es realmente difícil de predecir”, dice Tsai. “Pruebas clínicas probablemente están a cinco años de distancia. Y si todo va bien, convertirse en una droga aprobada probablemente tomaría al menos 10 años”.

Algunos inhibidores de HDAC, no específicos al HDAC2, han sido probados en pruebas clínicas como drogas para el cáncer. Sin embargo, para tratar el Alzheimer se requiere de un acercamiento más selectivo, dice Tsai. “Quieres algo tan selectivo como sea posible, y tan seguro como sea posible”, dijo ella.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Droga para cáncer de piel revierte rápidamente el Alzheimer en ratones

Tauopatía
Tauopatía

Una droga usada en el tratamiento del cáncer de piel podría revertir rápidamente el deterioro patológico, cognitivo y de la memoria asociada con la enfermedad de Alzheimer, de acuerdo a un estudio publicado el jueves.

La droga Bexaroteno que se utiliza actualmente para compartir el linfoma de células T, parece que mejoró la memoria en los ratones con enfermedad de Alzheimer al reducir los niveles de placa Beta-amiloide en el cerebro, que causan déficit mental en la enfermedad de Alzheimer.

En ratones viejos con placas de amiloide más establecidas, solo siete días de tratamiento redujo el número de placas a la mitad.

“Este es un encuentro sin precedentes. Previamente, el mejor tratamiento existente para la enfermedad de Alzheimer en ratones requería de varios meses antes de reducir las placas en el cerebro”, dijo Paige Cramer, investigador que llevó a cabo el estudio.

Este mes ha sido esperanzador para pacientes que sufren de Alzheimer y demencia. Justo la semana pasada investigadores descubrieron la ruta metabólica por la que se transmite el Alzheimer, proteínas anormales Tau brincan de neurona en neurona.

Más información
http://www.medicaldaily.com/ (en inglés)

Se descubre la ruta metabólica por la que se transmite el Alzheimer

Taupatía
Tauopatía

Dos nuevos estudios mostraron que la enfermedad de Alzheimer parece propagarse de célula cerebral en célula cerebral de la misma manera que lo hace una infección. Pero no son virus o bacterias, lo que se propaga es una proteína distorsionada llamada tau. Este sorprendente descubrimiento tiene implicaciones inmediatas para el desarrollo de tratamientos. Los investigadores sospechan que también otras enfermedades degenerativas del cerebro como la enfermedad de Parkinson pueden propagarse de forma similar. Lo que estos estudios indican es que la enfermedad de Alzheimer podría detenerse abruptamente previniendo la transmisión de célula a célula, quizá con un anticuerpo que bloquee la proteína tau.

Los investigadores sabían que algo iniciaba la enfermedad de Alzheimer. El candidato más probable es una proteína conocida como beta-amiloide, la cual se acumula en el cerebro de los pacientes de Alzheimer, formando placas duras. Pero la proteína beta-amiloide es muy diferente de la proteína tau, es secretada en grupos fuera de las células y los investigadores nunca han encontrado evidencia de que la amiloide se propague de célula en célula en una red. Pero, la amiloide crea lo que podría considerarse como un mal vecindario, entonces viene la proteína tau y mata las células.

Los estudios en humanos no podían determinar si esta hipótesis era correcta. Los estudios involucraban autopsias y obtención de imágenes del cerebro que eran indirectas e inconclusas. Para averiguar si la proteína tau anormal era la responsable por la propagación de la enfermedad de Alzheimer, se crearon ratones modificados genéticamente capaces de generar proteínas tau humanas anormales.

Estos ratones producían la proteína tau humana en un área del cerebro conocida como corteza entorrinal, una delgada capa de tejido detrás de las orejas. Si al pasar el tiempo la enfermedad de Alzheimer solo se localizaba en esta parte del cerebro capaz de producir la proteína tau humana anormal, esto habría descartado la propagación de las proteínas y por ende de la enfermedad por la red neuronal de la enfermedad.

Pero la enfermedad de Alzheimer, que comenzó en la corteza entorrinal como era esperado, se esparció hacia el medio del cerebro, donde las células comenzaron a morir por la enfermedad de Alzheimer. Como era de esperarse, las proteínas tau fueron encontradas ahí. Y también como era de esperarse, las células de la corteza entorrinal en los ratones comenzaron a morir, llenas de proteínas tau enredadas.

Durante los dos años siguientes, la muerte celular y la destrucción se expandió hacia afuera a otras células por el mismo medio. Ya que esas células del cerebro no podían producir tau humano anormal, la única manera en que estas células podrían obtener la proteína era al transmitirse de célula nerviosa en célula nerviosa hasta llegar a las otras áreas. Aunque este estudio fue en ratones, los investigadores esperan que el mismo fenómeno ocurra en humanos por que el ratón tenía el gen tau humano y la onda progresiva de muerte celular coincide con lo visto en la gente con la enfermedad de Alzheimer.

Ya que la proteína tau se propaga de neurona a neurona, podría ser necesario bloquear la producción de beta-amiloide, que parece iniciar la enfermedad, y la propagación de tau, que la continúa, para parar la enfermedad de Alzheimer. Los investigadores se preguntan ahora si otras enfermedades degenerativas se propagan a través del cerebro por que las proteínas pasan de célula nerviosa a célula nerviosa. Se ha visto evidencia de que esto podría pasar con la enfermedad de Parkinson.

Detalles técnicos

Las tauopatías son una clase de enfermedades neurodegenerativas asociadas con la agregación patológica de la proteína tau en el cerebro humano. La enfermedad más conocida de este mal es la enfermedad de Alzheimer (EA). En pacientes con EA, la enfermedad comienza en la corteza entorrinal (EC por sus siglas en inglés de entorhinal cortex) y se propaga anatómicamente en un patrón definido. Para probar si la patología que comienza en la EC se propaga a través del cerebro siguiendo circuitos conectados sinápticamente, los investigadores crearon ratones transgénicos con proteínas tau humanas en la corteza entorrinal y examinaron la distribución de la patología de tau en diferentes momentos.

En ratones relativamente jóvenes (de 10 a 11 meses de edad, la edad prometio de un ratón es de 4 años), el tau humano estaba presente en algunos cuerpos celulares, pero principalmente fue observado en axones (las largas y delgadas prolongaciones de las neuronas) dentro de las capas superficiales de la corteza entorrinal mediana y lateral, y en las zonas terminales de la ruta biológica perforante.

Pero en ratones viejos (con más de 22 meses de edad), intensa inmunoreactividad de tau humano era detectable no solo en las capas superficiales de la corteza entorrinal, sino también en el subículo, en un número sustancial de neuronas en el hipocampo piramidal, y en las células granulares de circunvolución dentada. Neuronas inmunoreactivas dispersas también fueron vistas en las capas más profundas de la corteza entorrinal y en perirrinal y en la corteza somatosensorial secundaria.

Relocalización de axones tau a compartimientos somato-dendríticos y la propagación de tauopatía a regiones fuera de la corteza entorrinal demostró que la propagación de la patología desde la corteza entorrinal se lleva a cabo por un mecanismo trans-sináptico de dispersión por medio de redes conectadas anatómicamente, entre neuronas vulnerables.

Imagen
Tauopatía – National Institute on Aging (Instituto Nacional en Envejecimiento) – Dominio público.

Más información
http://www.nytimes.com/ (en inglés)
Uno de los estudios (en inglés)
Centro de Investigación de la Enfermedad de Alzheimer (en inglés, llevaron a cabo el otro estudio pero no ha sido publicado)