Gen recién encontrado podría ayudar a las bacterias a sobrevivir en entornos extremos

Célula sin membrana protectora.
Célula sin membrana protectora.

Los lípidos microbiales resultantes también podrían significar caídas de oxígeno en la historia geológica de la Tierra.

Jennifer Chu, MIT News Office. Original (en ingles)

En los días que siguieron el derrame petrolero del Deepwater Horizon, bacterias que consumen metano prosperaron en el Golfo de México, alimentándose del metano que brotó, junto con el petróleo, del pozo dañado. La súbita afluencia de microbios fue una curiosidad científica: Anteriormente al derrame petrolero, científicos habían observado relativamente pocos signos de microbios que consumían metano en el área.

Ahora investigadores del MIT han descubierto un gen bacterial que podría explicar esta súbita afluencia de bacterias que se alimentan de metano. Este gen le permite a las bacterias sobrevivir en entornos extremos y carentes de oxígeno, durmientes hasta que la comida – como el metano de un derrame petrolero, y el oxígeno necesario para metabolizarlo – se vuelve disponibles. El gen codifica una proteína, llamada HpnR, que es responsable por producir lípidos bacteriales conocidos como 3-metilhopanoides. Los investigadores dicen que producir estos lípidos podría preparar mejor a los microbios para hacer una aparición súbita en la naturaleza cuando las condiciones son favorables, como después del accidente del Deepwater Horizon.

Los lípidos producidos por la proteína HpnR también podrían ser usados como biomarcadores, o una firma en las capas de roca, para identificar cambios dramáticos en los niveles de oxígeno en el transcurso de la historia geológica.

“Lo que nos interesa es que esto podría ser una ventana al pasado geológico”, dice la posdoctorado Paula Welander del Departamento de Ciencias de la Tierra, Atmosféricas y Planetarias (EAPS – Earth, Atmospheric and Planetary Sciences) del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts). “En el registro geológico, hace muchos millones de años, vemos un número de eventos de extinciones masivas donde hay evidencia de agotamiento de oxígeno en el océano. Es en estos eventos clave, e inmediatamente después de estos, donde también vemos un incremento en todos los biomarcadores como indicadores de una perturbación climática. Parece ser parte de un síndrome de calentamiento, deoxigenización del océano y extinción biótica. Las causas son desconocidas”.

Welander y el profesor de EAPS Roger Summons han publicado sus resultados esta semana en el Proceedings of the National Academy of Sciences (PNAS).

Una señal en las rocas

Diploptene, un compuesto hopanoide.
Diploptene, un compuesto hopanoide.

Las capas rocosas de la tierra sostienen restos de la evolución de la vida, desde las antiguas trazas de organismos unicelulares a los recientes fósiles de vertebrados. Uno de los biomarcadores clave que los geólogos han usado para identificar las formas tempranas de vida es una clase de lípidos llamados hopanoides, cuya robusta estructura molecular los ha preservado en el sedimento por miles de millones de años. Los hopanoides también han sido identificados en las bacterias modernas, y los geólogos estudiando los lípidos en las rocas antiguas los han usado como señales de la presencia de bacterias similares hace miles de millones de años.

Pero Welander dice que los hopanoides podrían ser usados para identificar más que las tempranas formas de vida: Los fósiles moleculares podrían ser biomarcadores para fenómenos ambientales – como períodos de muy bajo oxígeno.

Para probar la teoría, Welander examinó una cepa moderna de la bacteria llamada Methylococcus capsulatus, un organismo ampliamente estudiado aislado por primera vez de un baño público romano antiguo en Bath, Inglaterra. El organismo, que también vive en entornos pobres en oxígeno como las ventosas en lo profundo del océano y los volcanes de lodo, ha sido de interés para los científicos por su habilidad de consumir eficientemente grandes cantidades de metano – lo que podría hacerla útil en biomediación y desarrollo de biocombustibles.

Para Welander y Summons, M. capsulatus es especialmente interesante por su estructura: El organismo contiene un tipo de hopanoide con una estructura molecular de cinco anillos que contiene metilación C-3. Los geólogos han encontrado que dichas metilaciones en la estructura de anillo son particularmente bien preservadas en rocas antiguas, aún cuando el resto del organismo ha desaparecido.

Welander estudió el genoma de la bacteria e identificó hpnR, el gen que codifica la proteína HpnR, el que está específicamente asociado con la metilación C-3. Entonces diseñó un método para borrar el gen, creando una cepa mutante. Welander y Summons entonces crecieron cultivos de cepas mutantes así como cultivos de bacterias salvajes (sin alteraciones). El equipo expuso ambas cepas a los niveles bajos de oxígeno y los altos niveles de metano durante un período de dos semanas para simular un entorno pobre en oxígeno.

Durante la primera semana, había poca diferencia entre los dos grupos, ambos de los cuales consumieron metano y crecieron a alrededor de la misma taza. Sin embargo, en el día 14, los investigadores observaron que la cepa salvaje comenzó a crecer más rápido que la bacteria mutante. Cuando Welander añadió el gen hpnR de vuelta en la bacteria mutante, encontró que eventualmente esta regresaba a los niveles que se asemejaban al de la cepa salvaje.

Apenas logrando sobrevivir

¿Qué podría explicar el contraste dramático en las tasas de sobrevivencia? Para responder esto, el equipo usó microscopía electrónica para examinar las estructuras celulares en las bacterias mutantes y salvajes. Descubrieron la marcada diferencia: Mientras que el tipo salvaje estaba lleno con membranas normales y vacuolas, la cepa mutante no tenía ninguna.

Una célula bacterial con el gen, a la izquierda, exhibe la membrana protectora. Una célula sin el gen, a la derecha, no produce membranas.
Una célula bacterial con el gen, a la izquierda, exhibe la membrana protectora. Una célula sin el gen, a la derecha, no produce membranas. Imagen: Paula Welander

Las membranas faltantes, dice Welander, son una pista a la función del lípido. Ella y Summons postulan que el gen hpnR podría preservar las membranas celulares de las bacterias, lo que podría reforzar al microbio en tiempos de nutrientes agotados.

“Tienes a estas comunidades que apenas salen del paso, sobreviviendo en lo que pueden”, dice Welander. “Entonces cuando reciben una ráfaga de oxígeno o metano, pueden tomarlo muy rápidamente. Están realmente preparadas para aprovechar algo como esto”.

Los resultados, dice Welander, son especialmente emocionantes desde una perspectiva geológica. Si los 3-metilhopanoides realmente permiten a las bacterias sobrevivir en tiempos de oxígeno bajo, entonces un pico en el lípido relacionado en el registro rocoso podría indicar una disminución dramática en la historia de la Tierra, permitiendo a los geólogos entender mejor los períodos de extinciones masivas o grandes muertes masivas oceánicas.

“La meta original fue hacer esto un mejor biomarcador para los geólogos”, dice Welander. “Es [un trabajo] muy meticuloso, pero al final también queremos causar un mayor impacto, por ejemplo aprender como los microorganismos lidian con los hidrocarbonos en el entorno”.

David Valentine, un profesor de geoquímica microbial en la Universidad de California en Santa Bárbara, dice que el lípido objetivo del grupo es parecido al colesterol, que juega un papel importante en las membranas de células humanas y animales. Dice que el gen identificado por el grupo podría jugar un papel similar en bacterias.

“Este trabajo demuestra una importante unidad en biología”, dice Valentine. “Sus resultados son un paso necesario en proveer contexto para interpretar la distribución de estos biomarcadores en el registro geológico”.

Esta investigación fue patrocinada por la NASA y la Fundación Nacional de Ciencia de los Estados Unidos.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Llegarán al centro de la Tierra, una ambiciosa misión

Centro planeta
Imagen: axxon.com.ar

El Programa Integrado de Perforaciones del Océano (IODP), es un programa internacional de investigación marina que tiene como fin explorar la historia de la Tierra, así como las huellas que han quedado en las estructuras y sedimentos del suelo marino. En este programa se encuentran colaborando 27 países y tiene a su cargo un ambicioso proyecto, en el que se pretende alcanzar el manto de la Tierra, lo cual no se ha hecho antes.

Hasta el momento solo se ha podido penetrar a una profundidad de 1.5 km (se cree que es de 5.5. km), pero no se tiene ninguna muestra del manto terrestre aún, a pesar de que éste es el 68% de la masa terrestre, se espera obtener más información del mismo ya que, de ser así, las concepciones acerca de la evolución y la estructura del planeta, podrían llegar a ser más detalladas, corregidas o incluso transformadas.

El proyecto es todo un reto, pues el camino a recorrer tiene una presión 2,000 veces mayor a la existente a nivel del mar, osea 2 kilobares y se encuentra a 300 grados; eso sin mencionar que tan solo seran necesarios un billón de dólares para costear la labor que deben realizar los buques. Hay posibilidades de que dicho proyecto sea finalizado para el año 2025, se tiene previsto utilizar el buque “Tikyu” y trabajar en la región Tohoku, donde se encuentra la falla que ocasionó el terremoto y tsunami en marzo de 2011, el cual tuvo catastróficas consecuencias.

Una vista cercana de Mercurio

Mercurio
Imagen: NASA

Investigadores encuentran que el planeta pudo haber tenido un pasado dinámico

Jennifer Chu, MIT News Office. Original (en inglés).

Nuevas observaciones de una nave espacial orbitando Mercurio han revelado que el pequeño planeta alberga un interior muy inusual – y un vistazo de la topografía de la superficie de Mercurio por la nave sugiere que el planeta ha tenido una historia muy dinámica.

Las observaciones fueron tomadas por una sonda llamada MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging – Superficie, Ambiente Espacial, Geoquímica y Medición de Mercurio), la primera que alguna vez ha entrado en órbita alrededor de Mercurio. MESSENGER alcanzó la órbita de Mercurio en marzo del 2011, y desde entonces ha circulado el planeta dos veces al día, recolectando cerca de 100,000 imágenes y más de cuatro millones de mediciones de la superficie de Mercurio.

Un equipo de científicos de instituciones incluyendo al MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts), la Institución Carnegie de Washington, el Laboratorio de Física Aplicada de la Universidad Johns Hopkins y el Centro de Vuelo Espacial Goddard de la NASA han analizado los datos y mapeado precisamente la topografía del planeta y los campos gravitacionales. De los estimados de gravedad, el equipo encontró que Mercurio probablemente tiene una estructura interior inusual – un núcleo de hierro excepcionalmente grande recubierto por una capa sólida de sulfuro de hierro y un delgado manto y corteza exterior de silicato. De las mediciones topográficas, el equipo mapeó un gran número de cráteres en la superficie del planeta, realizando un descubrimiento sorpresivo: muchos de estos se han inclinado con el tiempo, sugiriendo que procesos dentro del planeta han deformado el terreno después de que los cráteres se formaron.

Lon investigadores detallan sus descubrimientos en dos revistas académicas publicadas esta semana en el diario “Science”.

“Anteriormente a las amplias observaciones del MESSENGER, muchos científicos creían que Mercurio era muy similar a la Luna – que se enfrió temprano en la historia del sistema solar, y que ha sido un planeta muerto a través de la mayoría de su evolución”, dice la coautora Maria Zuber, profesora de Geofísica en el MIT. “Ahora estamos encontrando evidencia convincente de una dinámica inusual dentro del planeta, indicando que Mercurio estuvo activo aparentemente por un largo tiempo”.

Misión mercuriana

Entrar en órbita alrededor de Mercurio no fue un logro sencillo, principalmente por su proximidad con el Sol. Cualquier nave espacial que se dirige hacia el planeta acelera, debido al poderoso campo gravitacional del Sol. Para contrarrestar el jalón del Sol y alentar a MESSENGER, el equipo de MESSENGER programó la sonda a que volara cerca de Venus dos veces, y Mercurio tres veces, antes de alentarse lo suficiente para ser capturado en la órbita de mercurio con la ayuda de un encendido del motor principal.

Tras entrar en la órbita de Mercurio, la nave espacial comenzó a medir las elevaciones de la superficie del planeta por medio de un altímetro láser. A través del rastreo por radio (el elemento), la sonda estimó el campo gravitacional del planeta. A través de la misión de un año, la nave espacial MESSENGER luchó con mareas desde el sol, que empujaron a la sonda fuera de su órbita óptima, así como lo que Zuber llama “presión de la luz solar” – fotones o paquetes de luz desde el sol que ejercen presión en la nave espacial. El equipo ajustó periódicamente la órbita de la sonda e hizo correcciones precisas a sus medidas para tomar en cuenta los efectos del sol, mapeando el campo gravitacional así como la elevación de la superficie del hemisferio norte de Mercurio.

Dentro y fuera

Las mediciones del equipo revelaron encuentros sorprendentes tanto en el interior del planeta como en su superficie. De los estimados gravitacionales de la sonda, el grupo dedujo que Mercurio probablemente tiene un núcleo enorme de hierro que incluye aproximadamente el 85 por ciento del radio del planeta. (En comparación el núcleo de la Tierra es alrededor de la mitad del radio en tamaño). Esto significa que el manto y y la corteza ocupan solo el 15 por ciento del radio exterior del planeta – aproximadamente tan delgado como la cáscara de una naranja, dice Zuber.

Los investigadores también razonaron, dado el campo gravitacional de Mercurio, que justo por encima de la capa fundida exterior del núcleo del planeta podría haber una capa sólida de hierro y azufre – un tipo de estructura en capas que no se conoce que exista en ningún otro planeta.

“Si el modelo de hierro y azufre es correcto, tendría implicaciones sobre como el dínamo dentro de Mercurio produce el campo magnético del planeta”, dice Gerald Schubert, profesor de ciencias de la Tierra y el espacio en la Univerdidad de Califoria en los Ángeles (UCLA), quien no participó en la investigación. “El proceso de generación del dínamo podría funcionar diferente en Mercurio comparado a la Tierra”.

El coautor Dave Smith, un científico investigador en el Departamento de las Ciencias de la Tierra, Atmosféricas y Planetarias del MIT, dice que el proceso científico que llevó a los resultados del equipó fue todo un viaje por sí mismo.

“Teníamos una idea de la estructura interna de Mercurio, [pero] las observaciones iniciales no encajaban con la teoría entonces dudamos de las observaciones”, dice Smith. “Trabajamos más y concluimos que las observaciones eran correctas, y entonces retrabajamos la teoría para el interior de Mercurio para que encajara con las observaciones. Así es como se supone que trabaje la ciencia, y es un buen resultado”.

A través de mediciones con láser de la superficie del planeta, los investigadores mapearon múltiples características geológicas en el hemisferio norte de Mercurio, encontrando que el rango de elevaciones eran más pequeñas que las de Marte o la Luna. También observaron algo inesperado en la cuenca Caloris de Mercurio, el más grande cráter de Mercurio: porciones del piso del cráter estaban más elevadas que su borde, sugiriendo que fuerzas dentro del interior empujaron el cráter después del impacto inicial que lo creó.

Zuber y su equipo también identificaron un área de tierras bajas centrada aproximadamente en el polo norte de Mercurio que pudo haber migrado ahí en el curso de la evolución del planeta. Zuber explica que un proceso llamado deambulación polar puede causar que características geológicas se muevan alrededor de la superficie del planeta debido a la redistribución de masa dentro o fuera de un planeta por procesos geodinámicos.

Uno de dichos procesos de transporte de masa en el interior de un planeta es convección dentro del manto. Material viscoso dentro del manto circula y puede empujar fragmentos de la corteza hacia arriba y hacia afuera, cambiando el terreno alrededor del planeta. Dado el manto extremadamente delgado de Mercurio, como fue revelado por MESSENGER, Zuber dice que es un reto encender como la convección operó para elevar amplias extensiones del terreno a las elevaciones observadas.

“Es interesante pensar qué pudo haber causado la deformación observada”, dice Zuber. “Parace que hay algunas dinámicas inusuales ocurriendo dentro de Mercurio”.

Reimpreso con permiso de MIT News.

Enlaces
Película a color de la superficie de Mercurio capturada por MESSENGER (.mov)

Imagen
NASA/JHUAPL/CIW-DTM/GSFC/MIT/Brown Univ/; Renderizada por James Dickson

Fuente
http://web.mit.edu/ (en inglés)

El núcleo de la tierra podría estar desplazado de su centro

Núcleo Tierra
© Cornell SPIF

Debido a la diferencia en que las ondas sísmicas se manifiesten en la superficie terrestre, más rápido en el hemisferio oriental que en el hemisferio occidental, geólogos alemanes y romanos, suponen que el núcleo de la tierra podría no estar justo en el centro del planeta.

Según la geología, el núcleo de nuestra planeta está formado por dos secciones, un núcleo interno sólido y un núcleo externo líquido. El sólido tendría un radio de unos 1200 kilómetros, formado por un 70% de Hierro y se encuentra a una profundidad de 5200 kilómetros, mientras que el núcleo externo, también está formado en su mayor parte de Hierro pero en estado líquido.

La geología siempre ha considerado que las ondas sísmicas se mueven más rápidamente en el hemisferio oriental que en el occidental, pero esto puede ser falso y en realidad lo que puede suceder es que recorran una menor distancia por el lado del hemisferio oriental para llegar a la superficie terrestre.

Una posición descentralizada del núcleo terrestre, implicaría consecuencias en la características mecánicas, termales y magnéticas de la tierra.

Fuente:
http://actualidad.rt.com/