Bacteria eukariotes
Imagen: Centers for Disease Control

Una sola mutación genética puede barrer a través de una población, abriendo la puerta para el concepto de “especies” en bacterias.

Denise Brehm, Civil and Environmental Engineering. Original (en inglés).

Las bacterias son los organismos más populosos en el planeta: prosperan en casi cada entorno conocido, adaptandose a diferentes hábitats por medio de variaciones genéticas que proveen las capacidades esenciales para la sobrevivencia. Estas innovaciones genéticas provienen de lo que los científicos creen que es una mutación al azar y un intercambio de genes y otros trozos de ADN entre bacterias que a veces les confiere una ventaja, y que entonces se vuelve una parte intrínseca del genoma.

Pero cómo se esparce una mutación ventajosa de una simple bacteria a todas las otras bacterias en una población es una pregunta científica abierta. ¿El gen que contiene una mutación ventajosa pasa de bacteria a bacteria, barriendo a través de la población entera por sí mismo? ¿O un solo individuo obtiene el gen, y entonces replica su genoma entero muchas veces para formar una nueva población mejor adaptada de clones idénticos? Evidencia conflictiva soporta ambos escenarios.

En una revista académica que apareció en la edición del 6 de Abril de Science, investigadores del Departamento de Ingeniería Civil y Ambiental (CEE – Civil and Environmental Engineering) del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) proveen evidencia de que las mutaciones ventajosas pueden barrer a través de las poblaciones por sí mismas. El estudio reconcilia la evidencia conflictiva previa al mostrar que después de tres barridos de genes, la recombinación se vuelve menos frecuente entre cepas de bacterias de diferentes poblaciones, produciendo un patrón de diversidad genética que recuerda al de la población clonal.

Esto indica que el proceso de evolución en las bacterias es muy similar al de las eucariotas sexuales – que no pasan su genoma intacto a su progenie – y sugiere un método unificado de evolución de las dos formas de vida mayores de la tierra: procariotas y eucariotas.

El hallazgo también llega al corazón de otra pregunta científica: como al delinear especies de bacterias – o determinar si el término “especies” siquiera aplica a bacterias, que son tipicamente identificadas como poblaciones ecológicas y no especies. Si todas las bacterias en una población son clones de un ancestro común, la idea de las especies no aplica. Pero si, como muestra este nuevo estudio, genes que son compartidos al azar entre individuos pueden dar lugar a una población nueva ecológicamente especializada, el uso del término podría ser garantizado.

“Encontramos que la diferenciación entre poblaciones estaba restringida a unos pocos parches pequeños en el genoma”, dice Eric Alm, profesor asociado de desarrollo de carrera de Ingeniería Civil y Ambiental e Ingeniería Biológica y miembro asociado del instituto Broad.

El profesor Martin Polz de CEE, otro investigador principal en el proyecto, añade, “Patrones similares han sido observados en animales, pero no esperamos verlos en bacterias”.

“El proceso de diferenciación ecológica en bacterias, que encontraron los investigadores, es similar a los mosquitos que transmiten malaria: algunas poblaciones desarrollan resistencia a agentes antimalariales por medio de un solo intercambio de genes, mientras que otras poblaciones compartiendo el mismo hábitat no lo hacen. El pez espinoso (Gasterosteidae) también se ha mostrado que sigue este patrón de “especiación simpátrica” (la formación de una especie sin que se establezca previamente una barrera geográfica entre poblaciones) en entornos compartidos.

“A pesar de que las fuentes de diversidad genética son muy diferentes entre bacterias y eucariotas sexuales, el proceso mediante el cual la diversidad adaptativa se propaga y desencadena una diferenciación ecológica parece muy similar”, dice el primer autor doctor Jesse Shapiro, un posdoctorado en la Universidad de Harvard quien realizó su trabajo de graduación en el laboratorio de Alm en el MIT.

Los investigadores realizaron el trabajo usando 20 genomas completos de la bacteria Vibrio cyclitrophicus que recientemente se había diversificado en dos poblaciones ecológicas adaptadas a microhábitats conteniendo diferentes tipos de zooplancton, fitoplancton y particulas orgánicas suspendidas en agua de mar. En un estudio previo basado en solo unos pocos genes, habían predecido que estas poblaciones cercanamente relacionadas de Vibrio estaban en el proceso de desarrollarse en dos diferentes poblaciones asociadas al hábitat.

El nuevo estudio muestra que las dos poblaciones fueron frecuentemente mezcladas por recombinación genética, quedando genéticamente distintas en solo unas pocas adaptaciones ecológicas genéticas, con una tendencia en aumento hacia intercambio de genes dentro – en lugar de entre – hábitats.

“Esta es la revista académica más sofisticada sobre especialización bacteriana que ha aparecido, sobre todo por que utiliza la dudosa palabra “especies” solo una vez, y eso es con precaución”, dice W. Ford Doolittle, un profesor emérito de bioquímica en la universidad de Dalhousie en Canada. “La base genética de diferenciación ecológica en bacterias – como el genotipo mapea al ecotipo y que procesos determinan este mapeo – es en mi mente el más grande problema en ecología microbial moderna”.

Otros coautores en la revista académica son el estudiante graduado del MIT Jonathan Friedman, los posdoctorados Otto Cordero y Sarah Preheim, la estudiante graduada Sonia Timberlake, y Gitta Szabo de la Universidad de Vienna en Austria. Los fondos fueron provistos por la Fundación Nacional de Ciencias, la Fundación Gordon y Betty Moor, y el Instituto Broad.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment