Se logró el entrelazamiento cuántico de ocho fotones

Enlazamiento
Imagen: MIT

Investigadores de la Universidad de Ciencia y Tecnología de China en Shangai crearon un sistema donde ocho fotones quedaron con probabilidades similares de estar polarizados con una orientación específica, algo conocido como estado “de gato de Schrödinger”. En una revista científica publicada en Nature Photonics, los autores Xing-Can Yao y su grupo describe una nueva técnica que utiliza fuentes de fotones ultra-brillantes para controlar algunos de los problemas que afectaron los experimentos de entrelazado tempranos.

El entrelazamiento cuántico es una de las áreas de la mecánica cuántica más intrigantes. Dos fotones entrelazados cuánticamente están en alguna forma interconectados sin importar la separación física entre estos; al realizar la observación de uno de estos fotones, su par entrelazado es afectado instantáneamente. Es un fenómeno difícil de estudiar.

En este experimento, los científicos separaron los fotones entrelazados, y tras la separación, un dispositivo conocido como placa de media onda (HWP) se insertó en el camino de uno de los haces de fotones, convirtiendo la polarización vertical de los fotones en polarización horizontal y viceversa. Después de esto los haces polarizados son recombinados, esto asegura que cada fotón tenga el mismo estado polarizado.

El proceso se repitió cuatro veces, con cada repetición se creaban más fotones entrelazados y polarizados, hasta llegar a un total de ocho hazes de fotones producidos del pulso láser inicial.

Ya que la polarización de los fotones es desconocida antes de la medición, según la interpretación estándar de la mecánica cuántica, se considera que contienen ambas polarizaciones con la misma probabilidad.

Finalmente se compararon utilizando un divisor de haces polarizador (PBS), que solo los transmite si están polarizados horizontalmente. Utilizando otra placa de media onda antes de la comparación, el experimento puede determinar cual es la polarización de los ocho fotones simultáneamente, lo que muestra si los ocho estaban entrelazados o no.

Hay 256 posibles combinaciones de polarización diferentes, y solo una de estas combinaciones de la polarización de los ocho fotones sería consistente con un estado entrelazado. En la gran mayoría de los casos, los investigadores encontraron valores de polarización esperados, la proporción de resultados deseados contra indeseados fue de 530 a 1.

Más información
El estudio (www.nature.com) (en inglés)
http://arstechnica.com/ (en inglés)

Importante avance hacia la computación fotónica

Caroline Ross
Caroline Ross. Foto: Allegra Boverman

Recientemente ha habido grandes avances en el desarrollo de chips fotónicos. Estos chips utilizan rayos de luz en lugar de electricidad para llevar a cabo sus funciones computacionales. Investigadores del Instituto Tecnológico de Massachusetts (MIT) han realizado un avance crucial hacia el desarrollo de procesadores fotónicos de silicón: un diodo fotónico.

En muchos de los sistemas de comunicación actuales, los datos viajan en forma de rayos de luz a través de fibras ópticas. Una vez que la señal llega a su destino, los datos son convertidos a su forma electrónica, y estos son procesados por medio de circuitos electrónicos, tras esto los datos vuelven a convertirse en luz utilizando un laser antes de ser enviados a otro lugar. Un procesador fotónico podría eliminar todas estas operación de conversión entre luz y electricidad, permitiendo que la luz fuera procesada directamente.

El nuevo componente desarrollado en MIT actua como un “diodo para la luz”, dice Caroline Ross, profesora de ciencia de materiales e ingeniería del MIT. Es análogo a un diodo electrónico, el cual permite que la electricidad viaje en un sentido pero la bloquea si intenta viajar en el otro. En este caso, este diodo crea un camino de un solo sentido para la luz en lugar de para la electricidad.

La luz es más rápida que los electrones, además de que se pueden transmitir varios rayos de luz por fibra óptica mientras que un cable solo puede transmitir una sola señal electrónica a la vez. De desarrollarse exitósamente procesadores fotónicos, la velocidad de las telecomunicaciones podría aumentar de manera considerable.

Para desarrollar el dispositivo, los investigadores tuvieron que encontrar un material que es a su vez transparente y magnético, características que rara vez se encuentran juntas. Utilizaron un material llamado garnet, el cual es deseable por que naturalmente transmite la luz diferente en una dirección que en la otra.

Fuente:
www.mit.edu (en inglés)