Antibióticos
Imagen: Christine Daniloff / iMol

Un equipo descubre el mecanismo que produce daño fatal al ADN en bacterias.

Anne Trafton, MIT News Office. Original (en inglés).

La penicilina y otros antibióticos han revolucionado la medicina, convirtiendo enfermedades que alguna vez fueron mortales en males fácilmente tratables. Sin embargo, mientras que los antibióticos han estado en uso por más de 70 años, el mecanismo exacto por medio del cual matan a las bacterias ha sido un misterio.

Ahora un nuevo estudio por investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y la Universidad de Boston revelan el mecanismo de muerte detrás de las tres grandes clases de antibióticos: Las drogas producen moléculas destructivas que dañan fatalmente el ADN bacterial a través de una larga cadena de eventos celulares.

Entendiendo los detalles de este mecanismo podría ayudar a los científicos a mejorar drogas existentes, de acuerdo a los investigadores. Pocos antibióticos nuevos han sido desarrollados en los últimos 40 años, y muchas cepas de bacteria se han vuelto resistentes a las drogas ahora disponibles.

“Uno podría mejorar la eficacia de muerte de nuestro arsenal actual, reducir las dosis requeridas o volver a sensibilizar cepas a los antibióticos existentes”, dice James Collins, un profesor de Ingeniería Biomédica en la Universidad de Boston, quien colaboró con Graham Walker, profesor de Biología del MIT, en un estudio que apareció en la edición del 20 de abril de la revista Science.

El autor líder del artículo es James Foti, un posdoctorado en el laboratorio de Walker. Otros autores son el posdoctorado del MIT Babho Devadoss y Jonathan Winkler, un doctor recientemente graduado en el laboratorio de Collins.

Radicales destructivos

En el 2007, Collins mostró que tres clases de antibióticos – quinolonas, betalactámicos y aminoglucósidos – matan células produciendo moléculas altamente destructivas conocidas como radicales hidroxilos. En el momento, él y otros sospechaban que los radicales lanzaban un ataque general contra cualquier componente de la célula que encontraban.

“Reaccionan con casi todo”, dice Walker. “Irán tras los lípidos, pueden oxidar proteínas, pueden oxidar el ADN”. Sin embargo, la mayoría de este daño no es fatal, encontraron los investigadores en el nuevo estudio.

Lo que es mortal a las bacterias es el daño inducido por hidroxilo a la guanina, una de las cuatro bases nucleótidas que constituyen el ADN. Cuando este daño es insertado en el ADN, las células tratan de reparar el año pero terminan acelerando su propia muerte. Este proceso “no causa todas las muertes, pero causa una cantidad notable de ellas”, dice Walker, quien es profesor de la Sociedad Americana del Cáncer.

Los estudios de Walker de las enzimas reparadoras del ADN llevaron a los investigadores a sospechar que esta guanina dañada, conocida como guanina oxidada, podría jugar un papel en la muerte celular por medio de antibióticos. En la primer fase de su investigación, mostraron que una enzima especializada en el copiado de ADN llamada DinB – parte del sistema de una célula para lidiar con el daño al ADN – es muy buena utilizando el bloque de construcción de guanina oxidada para sintetizar ADN.

Sin embargo, DinB no solo inserta guanina oxidada opuesta a su compañera base correcta, citosina, en la hebra complementaria cuando se está copiando el ADN, sino que también la inserta con su compañera incorrecta, adenina. Los investigadores encontraron que, cuando se han incorporado demasiadas guaninas oxidadas en nuevas hebras de ADN, los esfuerzos inútiles de la célula para remover estas lesiones resultaron en la muerte.

Basado en estos estudios de reparación muy básica de ADN, Walker y sus colegas crearon la hipótesis de que los radicales hidroxilos producidos por los antibióticos podrían ser el inicio mismo de la cascada de daño al ADN. Esto resultó ser el caso.

Una vez que la guanina oxidada causada por el tratamiento con antibióticos es insertada en el ADN, un sistema celular diseñado para reparar el ADN es activado. Enzimas especializadas conocidas como MutY y MutM hacen cortes en el ADN para iniciar su proceso de reparación que normalmente ayuda a las células a lidiar con la presencia de guanina oxidada en su ADN. Sin embargo, esta reparación es arriesgada porque requiere abrir la doble hélice del ADN, cortando una de sus cadenas mientras que la base incorrecta es reemplazada. Si dos de estas reparaciones se llevan a cabo en estrecha proximidad a las hebras opuestas de ADN, el ADN sufre un rompimiento de doble hélice, lo que usualmente es fatal a la célula.

“Este sistema, que normalmente debe estar protegiéndote y manteniéndote muy preciso, se vuelve tu verdugo”, dice Walker.

Deborah Hung, una profesora de Microbiología e Inmunobiología en la Escuela Médica de Harvard, dice que el nuevo estudio representa “el próximo capítulo importante mientras que atravesamos un renacimiento de entendimiento sobre cómo funcionan los antibióticos. Solíamos pensar que sabíamos, y ahora nos damos cuenta de que todas nuestras suposiciones simples estaban equivocadas, y es mucho más complejo”, dice Hung, quien no fue parte de este estudio.

Nuevos objetivos

En algunos casos de daño al ADN inducido por antibióticos, la célula bacterial es capaz de salvarse a sí misma al reparar el rompimiento de doble hebra usando un proceso llamado recombinación homóloga. Desactivar las enzimas requeridas para la recombinación homóloga podría incrementar la sensibilidad de las bacterias a los antibióticos, dicen los investigadores.

“Nuestro trabajo sugiere que las proteínas involucradas en reparar las dobles-hebras rotas de ADN podrían ser objetivos interesantes detrás de los cuales ir como medio para afectar la eficacia de muertes de las drogas”, dice Collins.

Los investigadores, cuyo trabajo fue patrocinado por los Institutos Nacionales de Salud y el Instituto Médico Howard Hughes, también mostraron un mecanismo adicional que podría estar involucrado en las muertes de células causadas por uno de los tipos de antibióticos, aminoglucósidos: En células tratadas con estos antibióticos, la guanina oxidada es incorporada en el mensajero ARN, resultando en proteínas incorrectas que, a su vez, disparan más produción de radicales hidroxilos y así más guanina oxidada. Los investigadores trabajan ahora para avanzar aún más en su comprensión de cómo los antibióticos matan células.

Reimpreso con permiso de MIT News.

http://web.mit.edu/ (en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment