
En un nuevo microchip, las células se separan por ruedo.
Jennifer Chu, MIT News Office. Original (en inglés).
La rodadura de una célula es un mecanismo común que las células utilizan para navegar a través del cuerpo. Durante inflamación, por ejemplo, las células endoteliales que recubren los vasos sanguíneos presentan ciertas moléculas que atraen a los glóbulos blancos de la sangre, solo lo suficiente para desviarlos del resto del tráfico celular del vaso. Las glóbulos blancos de la sangre después de rodar a lo largo de las paredes de los vasos, disminuyen la velocidad para ayudar en la curación de las áreas inflamadas.
Los investigadores del MIT y el Hospital Brigham y de Mujeres han diseñado un chip clasificador de células que toman ventaja de este mecanismo natural de células rodantes. El dispositivo toma mezclas de células, que fluyen a través de pequeños canales recubiertos con moléculas adhesivas. Células con receptores específicos se unen débilmente a estas moléculas, rodando lejos del resto del flujo, y hacia un recipiente separado.
Los clasificadores de células, aproximadamente del tamaño de sellos postales, se pueden fabricar uno encima de otro para separar muchas células a la vez — una ventaja para los científicos que quieren aislar grandes cantidades de células rápidamente. El dispositivo no requiere necesariamente una bomba externa para empujar las células a través del chip, lo que hace que sea una opción portátil y accesible para su uso en laboratorios o clínicas, donde las muestras de células se pueden tomar y ordenar sin el equipo especializado.
“Estamos trabajando en un dispositivo desechable donde ni siquiera se necesita una bomba de jeringa para llevar a cabo la separación”, dice Rohit Karnik, el Profesor adjunto de Ingeniería Mecánica del MIT. “Usted podría potencialmente comprar un kit de $5 o $10 dólares y obtener las células sin necesidad de ordenar cualquier tipo de instrumento [adicional]”.
Karnik colaboró con el postdoctorado Sung Young Choi del MIT y Jeffrey Karp, co director del Centro de Terapias Regenerativas de Brigham y de la Mujer. El equipo informó de sus hallazgos en un artículo publicado en línea en la revista Lab on a Chip.
Mientras que las tecnologías actuales de clasificación de células separan grandes lotes de células de forma rápida y eficiente, tiene varias limitaciones. La clasificación de células activadas por fluorescencia, una técnica ampliamente utilizada, requiere láseres y voltaje para la clasificación de células basado en su carga eléctrica — un sistema complejo que requiere múltiples partes. Los investigadores también han usado marcadores fluorescentes y perlas magnéticas que se unen a las células deseadas. Haciéndolas fácil de detectar y separar. Sin embargo, una vez recogidas, las células necesitan ser separadas de las perlas y marcadores — un paso adicional que corre el riesgo de modificar las muestras.
Ir con la corriente
El equipo de Karnik diseñó un clasificador de células compacto que no requiere de pasos o partes adicionales. El equipo lo construyó en base a su trabajo del 2007 con Robert Langer del MIT y otros, en el que por primera vez se les ocurrió el principio de la clasificación por la rodadura. Desde entonces, el grupo ha ido convirtiendo el principio en práctica, diseñando un dispositivo funcional para la ordenación de las células. La primera prueba del principio de diseño era relativamente sencilla: Las células fueron inyectadas en una sola entrada, lo que dio paso a una gran cámara recubierta en un lado por moléculas adhesivas que inducen la rodadura. Las células entrantes fluyeron a través de la cámara; las células que se unieron a las moléculas rodaron a un lado, y luego hacia una cámara de recolección.
Sin embargo, los investigadores encontraron que con el fin de permitir que las células objetivo primero se queden en la superficie de cámara, se requerían canales largos, lo que haría el dispositivo demasiado grande. En su lugar, a Choi se le ocurrió un patrón superficial que hace a las células circular dentro de la cámara. El patrón consta de 10 canales paralelos, con 50 crestas y zanjas, cada cresta de aproximadamente 40 micras de altura. Los investigadores recubrieron las crestas con P-selectina, una molécula muy conocida que promueve la rodadura de las células. Después inyectaron dos tipos de células de leucemia: uno con los receptores de la P-selectina, y el otro sin ellos.
Encontraron que una vez inyectadas, las células entraron a la cámara y rebotaron por la parte superior de las crestas, saliendo del chip a través de una toma de corriente. Las células receptoras de P-selectina fueron “atrapadas” por la molécula pegajosa y se volcaron a las trincheras que llevaron a un recipiente aparte. A través de sus experimentos, el equipo recuperó con éxito las células que tenían la intención de separar con una pureza del 96 por ciento.
Karnik dice que el dispositivo puede ser replicado y apilado para ordenar grandes cantidades de células a un costo relativamente bajo. Él y sus colegas esperan poder aplicar el dispositivo para ordenar las demás células sanguíneas, así como cierto tipo de células cancerosas para aplicaciones de diagnóstico y células madre para aplicaciones terapéuticas. Para hacer esto, el equipo está investigando moléculas similares a P-selectina que se unen débilmente a tal célula. En el futuro, Kamik prevé rodadura de células a la medida, diseñando moléculas y superficies que se adhieran débilmente a cualquier tipo célula deseada.
“Realmente es la habilidad de diseñar moléculas para separar las células de interés lo que será poderoso”, dice Karnik. “No hay ninguna razón para creer que no se puede hacer, porque la naturaleza ya lo ha hecho”.
El dispositivo es un “diseño inteligente”, dice Milica Radisic, profesor asociado de ingeniería biomédica en la Universidad de Toronto, que no participó en esta investigación. Radisic dice que el dispositivo se basa en la hidrodinámica dentro de la cámara, que no requiere equipo externo.
“El diseño es probablemente bueno así como está para la separación de líneas celulares de leucemia”, dice Radisic. “La cuestión es si puede ser adoptado para otros pares receptores/ligandos”.
Reimpreso con permiso de MIT News.
Fuente
http://web.mit.edu/ (en inglés)