Cristal de tungsteno
Cristal de tungsteno

Un nuevo tipo de cristal fotónico de alta temperatura desarrollado por el MIT podría en el futuro alimentar todo, desde teléfonos celulares hasta naves espaciales.

Par David L. Chandler, MIT News Office. Original (en inglés).

Un equipo de investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) desarrolló una manera de hacer una versión de alta-temperatura de un tipo de materiales llamados cristales fotónicos, utilizando metales como tungsteno (también llamado wolframio) o tantalio. Los nuevos materiales – que pueden operar a temperaturas de hasta 1,200 grados Celsius – podrían encontrar una amplia variedad de aplicaciones alimentando dispositivos electrónicos portátiles, de naves espaciales a sondas de espacio profundo, y nuevos emisores de luz infrarroja que podrían ser usados como detectores químicos y sensores.

Comparado a los intentos tempranos de hacer cristales fotónicos de alta temperatura, el nuevo acercamiento es “alto rendimiento, más sencillos, robustos y dóciles para la producción barata en gran escala”, dijo Ivan Celanovic, autor principal de una revista académica describiendo el trabajo en la revista científica PNAS (Proceedings of the National Academy of Sciences). Los co-autores de la revista académica fueron los profesores del MIT John Joannopoulos y Marin Soljačić, los estudiantes graduados Yi Xiang Yeng y Walker Chen, el afiliado Michael Ghebrebrhan y el antiguo posdoctorado Peter Bermel.

Estos nuevos cristales fotónicos bidimensionales de alta temperatura pueden ser fabricados casi completamente, utilizando técnicas de microfabricación estándar y equipo existente para manufacturar chips de computadora, dijo Celanovic, un ingeniero investigador el Instituto de Nanotecnologías de Soldado del MIT.

Mientras que hay cristales fotónicos naturales – como los ópalos, cuyos colores iridiscentes resultan de una estructura en capas con una escala comparable a las longitudes de onda de la luz visible – el trabajo actual involucra un material nanodiseñado a la medida para el rango infrarrojo. Todos los cristales fotónicos tienen una celosía (una estructura reticular de barras rectas interconectadas en nudos formando triángulos planos en celosías planas o pirámides tridimensionales en celosías espaciales) de un tipo de material intercaladas con espacios abiertos o un material complementario, para que permitan selectivamente ciertas longitudes de onda de luz que pasen mientras que otras sean absorbidas. Cuando se utilizan como emisores, pueden irradiar selectivamente ciertas longitudes de onda mientras que suprimen fuertemente otras.

Cristales fotónicos que puedan operar a muy altas temperaturas podrían abrir todo un rango de aplicaciones potenciales, incluyendo dispositivos para conversion solar-térmico o solar-químico, dispositivos alimentados por radioisótopos, generadores alimentados por hidrocarbonos componentes para exprimir energía del calor residual en plantas de energía o instalaciones industriales. Pero ha habido mucho obstáculos para crear dichos materiales: Las altas temperaturas pueden llevar a la evaporación, difusión, corrosión, agrietado, derretimiento o reacciones químicas rápidas de las nanoestructuras de los cristales. Para sobreponerse a estos desafíos, el equipo del MIT usó diseño guiado computarizado para crear una estructura de tungsteno de alta pureza, usando un diseño específico geométrico para evitar el daño cuando el material es calentado.

La NASA ha tomado interés en la investigación por su potencial para proveer energía de larga duración para misiones de espacio profundo que no pueden depender de la energía solar. Estas misiones típicamente utilizan generadores termales de radioisótopos (RTGs – radioisotope thermal generators), que recolectan la energía de una pequeña cantidad de material radioactivo. Por ejemplo, el nuevo robot Curiosity que se espera que llegue a marte este verano usa un sistema RTG; será capaz de operar continuamente por muchos años, a diferencia de las sondas alimentadas por energía solar que tienen que agacharse durante el invierno cuando la energía solar es insuficiente.

Otras aplicaciones potenciales incluyen maneras más eficientes de alimentar despositivos electrónicos portátiles. En lugar de baterías, estos dispositivos podrían llevar generadores termofotovoltáicos que producen electricidad de calor que se genera químicamente por microreactores, de un combustible como el butano (el gas que alimenta nuestros hogares). Para un dado peso y tamaño, dichos sistemas podrían permitirle a estos dispositivos operar 10 veces más tiempo del que lo hacen con las baterías actuales, dijo Celanovic.

Shawn Lin, un profesor de física en el Instituto Politécnico Pensselaer que se especializa en tecnología para fabricar circuitos del futuro, dice que la investigación en radiación termal a altas temperaturas “continua retando nuestro entendimiento científico de los diversos procesos de emisión con longitudes de onda pequeñas, y nuestra capacidad tecnológica”, Lin, que no estuvo involucrado en este trabajo, agrega, “este cristal de tungsteno bidimensional en particular es único, ya que es fácil de fabricar y además muy robusto para la operación en altas temperaturas. Este diseño de cristal fotónico debería encontrar aplicaciones importantes en los sistemas solar-térmicos y de conversión de energía.”

Mientras que siempre es difícil de predecir cuanto tiempo le llevará a los avances en ciencias básicas llegar a productos comerciales, Celanovic dice que él y sus colegas ya están trabajando en un sistema de integración y pruebas de aplicaciones. Podría haber productos basados en esta tecnología en tan solo dos años, dijo, y más probablemente dentro de los próximos cinco años.

Adicionalmente al producir energía, el mismo cristal fotónico puede ser utilizado para producir longitudes de onda de luz infrarroja precisamente sintonizados. Esto permitiría análisis espectroscópicos de materiales de alta precisión y llevar a detectores químicos sensibles, dijo.

Reimpreso con permiso de MIT News.

Imagen
Una imagen microscópica de la estructura del cristal fotónico de tungsteno revela el espaciado uniforme preciso de cavidades fomadas en el material, que están sintonizadas a longitudes de onda de luz específicas. Imagen: Y.X. Yeng et al.

Fuente
http://web.mit.edu/ (en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment