Células
Imagen: Mari Kempes

Todos los organismos vivientes balancean un cierto tipo de presupuesto – asignando energía a diversas partes de su cuerpo para sustentar los procesos esenciales para la vida. A través de su vida, un organismo puede re-balancear este presupuesto para gastar más energía en unos ciertos procesos que en otros. De acuerdo a cómo gasta un organismo su energía determina, en gran parte, su habilidad para sobrevivir en el mundo, investigadores que estudian “bioenergética” están modelando el uso de energía en organismos para entender como las poblaciones crecen y evolucionan.

Investigadores en el MIT (Massachusetts Institute of Technology) han elaborado un modelo de cómo la energía es gastada en los organismos más pequeños y más simples de la tierra, que van desde bacterias unicelulares a microbios multi-celulares. El modelo divide los posibles usos de energía de un organismo en dos amplias categorías: crecimiento y reproducción, y mantenimiento y reparación. Basados en el tamaño de un organismo dado, el modelo predice precisamente que fracción de la energía es gastada en cada categoría.

Los científicos dicen que esta información podría ser crucial para determinar como las poblaciones de bacterias y otros microbios crecen y se esparcen en los océanos y en el suelo. El modelo también le ayuda a los investigadores a interpretar cambios evolutivos mayores: Conforme los microbios evolucionen para volverse más complejos, lo más probable es que reharán el presupuesto de energía para soportar nueva maquinaria celular.

Los investigados publicaron sus resultados en la edición del 26 de diciembre de “Proceedings of the National Academy of Sciences” (Procedimientos de la Academia Nacional de Ciencias).

Mick Follows, coautor de la revista académica y un científico investigador en el Departamento de las Ciencias Terrestres, Atmosféricas y Planetarias del MIT, dice que todos los organismos, en algún punto, enfrentan la decisión de reparar o reproducirse, algunos invierten más energía en un proceso que en el otro.

“Puedes imaginarte que una estrategia vital para un organismo podría ser: ‘No voy a gastar nada en mantenimiento, solo voy a reproducirme tan rápidamente como sea posible y espero hacer tantas copias de mí que algunas de ellas lo lograrán,'” dice Follows. “Y la estrategia opuesta es, ‘Bueno, voy a invertir menos en reproducción, y realmente cuidarme y mantenerme en una buena condición y no morir si puedo evitarlo.'”

El estudiante graduado de Follows, Christopher Kempes desarrolló un modelo matemático que predice, ampliamente, cómo los microbios reparten la energía. Kempes creó ecuaciones que representan que tan rápido crece un microbio dado, así como la cantidad total de comida que un organismo puede convertir en energía. El equipo, junto con la científica investigadora Stephanie Dutkiewicz, compilaron los datos de otros investigadores que midieron el peso de varios microbios sobre su tiempo de vida, incluyendo bacterias unicelulares y pequeños camarones multi-celulares.

El equipo del MIT combinó los datos con sus ecuaciones, y encontró algunos patrones interesantes entre los microbios.

Para el microbio de los intestinos Escherichia coli (E. Coli), casi cada onza de energía se gasta en la reproducción. A través de su vida, una sola bacteria E. Coli crece y se divide continuamente, colonizando rápidamente un conducto estomacal o una placa de petri con millones de células simples. La ligeramente más compleja alga verde exime una trayectoria similar, reproduciéndose hasta el final antes de re-enfocar su energía hacia dentro, en procesos que mantienen la maquinaria celular. En Contraste, los pequeños crustáceos milimétricos están más auto-involucrados, gastando la mayoría de su vida manteniendo complejos componentes antes de gastar energía en reproducción.

La tendencia general, dice Follows, parece ser que mientras más grande y más complejo es un organismo, más energía gasta buscando mantenerse a sí mismo, o reparando estructuras internas. Los organismos más pequeño y simples se enfocan más en crecer y proliferar, contando en sus grandes números para incrementar sus posibilidades de supervivencia.

“Puedes darte una idea de como vas a partir de células muy sencillas que pueden crecer rápido,” dice Follows. “Conforme agregan maquinaria, invierten más en mantenimiento. Y entonces en cierto punto, la estrategia también se vuelve muy intensiva en términos de energía. Pero en ese punto, la multicelularidad te permite compartir energía y recursos con otras células.”

Estas tendencias, especula el equipo, podría reflejar los amplios cambios evolucionarios entre las procariotas (organismos que no tienen un núcleo u orgánulos pegados a las membranas) unicelulares como la E. coli, procariotas más complejas como las algas verdes, y organismos multi-celulares simples como los pequeños camarones. A través de su modelo, los investigadores pueden determinar el tamaño más pequeño de los organismos simples, basados en como usan su energía, así como el tamaño al cual los organismos evolucionan para volverse multi-celulares.

“Esas transiciones evolucionarias ocurren en nuestro modelo en etapas muy predecibles,” dice Kempes. “Esas transiciones permiten a los organismos volverse más grandes, y esa es la historia de como la vida se volvió tan compleja.”

Steven Allison, un profesor asistente de ecología y biología evolucionaria en la Universidad de California en Irvine, dice que el nuevo modelo del grupo puede ser usado para evaluar cómo todos los organismos, grandes y pequeños, gastan energía.

“La innovación clave aquí es que el uso de energía y recursos de los microbios puede cambiar a través de sus ciclos de vida,” dice Allison. “Estas diferencias no han sido apreciadas antes. Esto significa que podría ser posible predecir la tasa de crecimiento de la población basada en el tamaño de las células y su tipo.”

El equipo planea incorporar el modelo matemático para la energía de un solo organismo en modelos de poblaciones a gran escala. Follows dice que conociendo cómo un solo organismo reparte la energía podría ayudar a investigadores a modelar de manera más precisa cómo los microbios se dispersan a través de un entorno. Por ejemplo, si un científico construye un modelo para representar bacterias en el océano, la población podría verse muy diferente dependiendo de si el investigador programa las bacterias a gastar toda su energía en reproducción o en reparación.

“En cierto sentido, los modelos actuales de Fitoplancton (organismos con capacidad fotosintética que viven dispersos en el agua) en el océano no usan este tipo de información,” dice Follows. “Necesitamos mejorar esos modelos.”

Fuente:
http://web.mit.edu/ (en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment