Kepler-30c orbitando
Kepler-30c orbitando

Investigadores miden la orientación de un sistema multiplanetario y la encuentran muy similar a la de nuestro propio sistema solar.

Jennifer Chu, MIT News Office. Original (en inglés)

Nuestro sistema solar exhibe una configuración notablemente ordenada: Los ocho planetas orbitan el sol como corredores en una pista, circulando en sus respectivos carriles y siempre manteniendo el mismo plano. En contraste, la mayoría de los exoplanetas descubiertos en años recientes – particularmente los gigantes conocidos como ‘Jupiters calientes’ – habitan orbitas más excéntricas.

Ahora investigadores en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts), la Universidad de California en Santa Cruz y otras instituciones han detectado el primer sistema exoplanetario, a 10,000 años luz de distancia, con órbitas regularmente alineadas similares a aquellas en nuestro sistema solar. En el centro de este sistema lejano se encuentra Kepler-30, una estrella tan brillante y masiva como el sol. Después de analizar datos del telescopio espacial Kepler de la NASA, los científicos del MIT y sus colegas descubrieron que la estrella – de forma similar al Sol – rota alrededor de un eje vertical y sus tres planetas tienen órbitas que están todas en el mismo plano.

“En nuestro sistema solar, la trayectoria de los planetas es paralela a la rotación del sol, lo que muestra que probablemente se formaron de un disco rotando,” dice Roberto Sanchis-Ojeda, un estudiante graduado de física en el MIT quien lideró el esfuerzo investigativo. “En este sistema, mostramos que la misma cosa sucede.”

Sus hallazgos, publicados hoy en el diario Nature, podría ayudar a explicar los origenes de ciertos sistemas muy extensos mientras que arroja luz en nuestro propio vecindario planetario.

“Esto me está diciendo que el sistema solar no es algún tipo de casualidad,” dice Josh Winn, un profesor asociado de física en el MIT y co-autor del artículo. “El hecho de que la rotación del sol está alineada con las órbitas de los planetas, probablemente no es algún tipo de coincidencia extraña.”

Poniendo en claro las inclinaciones orbitales

Representación artística de un Jupiter caliente
Representación artística de un Jupiter caliente. Imagen: NASA

Winn dice que el descubrimiento del equipo puede respaldar una teoría reciente sobre como se formaron los Jupiters calientes. Estos cuerpos gigantes son nombrados por su proximidad extremadamente cercana a sus estrellas blancas calientes, completando una órbita en solo horas o días. Las órbitas de los Jupiter calientes son típicamente descentradas, y los científicos han pensado que dichas desalineaciones podrían ser una pista a sus orígenes: Sus órbitas podrían haber sido desviadas en el periodo muy temprano y volátil de la formación de un sistema planetario, cuando varios planetas gigantes pudieron haberse acercado tanto como para dispersar algunos planetas fuera del sistema mientras que acercaron más a sus estrellas a otros.

Recientemente, los científicos han identificado un número de sistemas con Jupiters calientes, todos los cuales tienen órbitas inclinadas. Pero para realmente probar esta teoría de la “dispersión planetaria”, Winn dice que los investigadores tienen que identificar un sistema sin Jupiter caliente, uno con planetas circulando más lejos de su estrella. Si el sistema estuviera alineado como nuestro sistema solar, sin inclinación orbital, proveería evidencia de que solo los sistemas con Jupiter calientes están desalineados, formados como resultado de dispersión planetaria.

Encontrando mánchas solares en un sol lejano

Para poder resolver el misterio, Sanchis-Ojeda estudio datos del telescopio espacial Kepler, un instrumento que monitorea 150,000 estrellas por señales de planetas distantes. El lo enfocó en Kepler-30, un sistema sin Jupiter caliente con tres planetas, todos con órbitas mucho más largas que las de un Jupiter caliente típico. Para medir la alineación de la estrella, Sanchis-Ojeda rastreó sus manchas solares, manchas oscuras en la superficie de estrellas brillantes como el sol.

Representación artística del planeta Kepler-30c transitando una de las machas solares de la estrella.
Representación artística del planeta Kepler-30c transitando una de las machas solares de la estrella. Imagen: Cristina Sanchis Ojeda

“Estas pequeñas manchas negras marchan a través de la estrella conforme rota,” dice Winn. “Si pudiéramos hacer una imagen sería muy bueno, por que verías exactamente como está orientada la estrella con solo rastrear estos puntos.”

Pero estrellas como Kepler-30 están extremadamente lejos, así que capturar la imagen de ellas es casi imposible: La única manera de documentar dichas estrellas es al medir la pequeña cantidad de luz que ellas dan. Así que el equipo buscó maneras de rastrear manchas solares usando la luz de estas estrellas. Cada vez que un planeta transita – o cruza en frente de – dicha estrella, bloquea un poco de luz solar, lo que los astrónomos ven como una caída en la intensidad de la luz. Si un planeta cruza un punto oscuro, la cantidad de luz bloqueada se reduce, creando una variación en la caída de luz.

“Si obtienes una variación causada po una mancha solar, entonces la próxima vez que el planeta llega, el mismo punto se ha movido de ahí, y verías la variación no aquí sino allá,” dice Winn. “Así que el tiempo de estas variaciones es lo que usamos para determinar la alineación de una estrella.”

De las variaciones de datos, Sanchis-Ojeda concluyó que Kepler-30 rota en un eje perpendicular al plano orbital de su planeta más grande. Los investigadores determinaron entonces la alineación de las órbitas de los planetas estudiando los efectos gravitaciones de un planeta en el otro. Midiendo las variaciones temporales de los planetas conforme transitan la estrella, el equipo derivó sus configuraciones orbitales respectivas, y encontró que todos los tres planetas están alineados en el mismo plano. La estructura planetaria general, encontró Sanchis-Ojeda, se ve mucho como la de nuestro sistema solar.

James Lloyd, un profesor asistente de astronomía en la Universidad Cornell quien no estuvo involucrado en esta investigación, dice que estudiando las órbitas planetaria podría arrojar luz sobre como la vida evolucionó en el universo – ya que para tener un clima estable adecuado para la vida, un planeta necesita una órbita estable. “Para poder entender como la vida común es en el universo, necesitamos entender que tan comunes son los sistemas planetarios estables,” dice Lloyd. “Podríamos encontrar pistas en sistemas planetarios extrasolares para ayudar a entender los acertijos del sistema solar, y vice versa.”

Los hallazgos de este primer estudio de la alineación de un sistema sin Jupiter caliente sugieren que los sistemas de Jupiter calientes podrían realmente formarse por medio de dispersión planetaria. Para asegurarse, Winn dice que el y sus colegas planean medir las órbitas de otros sistemas solares lejanos.

“Hemos estado muy hambrientos por algo como esto, donde no es exactamente como el sistema solar, pero al menos más normal, donde los planetas y la estrella están alineados uno con otro,” dice Winn. “Es el primer caso donde puedes decir eso, además del sistema solar.”

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Published by Juan Valencia

Trabajo como Autor y Editor en XCuriosidades, además de encargarme de la parte técnica. Soy un Desarrollador Web con muchos años trabajando en el ramo.

Leave a comment