MIT chip
Imágen: Christine Daniloff

Un sistema desarrollado en el MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) podría combinar energía recolectada de la luz, calor y vibraciones, para ejecutar sistemas de vigilancia.

David L. Chandler, MIT News Office. Original (en inglés).

Los investigadores del MIT han dado un paso significativo hacia los sistemas de vigilancia sin baterías — que podría finalmente ser utilizado en dispositivos biomédicos, sensores del medio ambiente en lugares remotos y medidores en puntos de difícil acceso, entre otras aplicaciones.

El trabajo previo del laboratorio de profesor Anantha Chandrakasan del MIT, se ha enfocado en el desarrollo de chips de computadora y comunicación inalámbrica, que pueden operar a niveles de energía extremadamente bajos, y en una variedad de dispositivos que pueden aprovechar el poder de la luz natural, el calor y vibraciones en el medio ambiente. El desarrollo más reciente, llevado a cabo con el estudiante de doctorado Saurav Bandyopadhyay, es un chip que podría aprovechar las tres de estas fuentes de energía ambiental a la vez, optimizando el suministro de energía.

El circuito de combinación de energía se describe en un artículo que se publicará este verano en el Diario de Circuitos de Estado Sólido del IEEE.

“La recolección de energía se está convirtiendo en una realidad”, dice Chandrakasan, el profesor de Ingeniería Eléctrica de Keithley y director del Departamento de Ingeniería Eléctrica y Ciencias Computacionales del MIT. Los chips de bajo consumo de energía que pueden recopilar datos y transmitirlos a una estación central están en desarrollo, así como los sistemas para aprovechar la energía de fuentes ambientales. Pero el nuevo diseño logra un uso eficiente de múltiples fuentes de energía en un solo dispositivo, una gran ventaja ya que muchas de estas fuentes son intermitentes e impredecibles.

“La clave aquí es el circuito que combina eficientemente muchas fuentes de energía en una sola”, dice Chandrakasan. Los dispositivos individuales necesarios para aprovechar estas pequeñas fuentes de energía — como la diferencia entre la temperatura del cuerpo y el aire exterior, o los movimientos y vibraciones de cualquier cosa de una persona que camina a un puente en vibración porque el tráfico pasa sobre él – ya se han desarrollado, muchos de ellos en el laboratorio de Chandrakasan.

Combinando el poder de estas fuentes variables requiere un sofisticado sistema de control, Bandyopadhyay explica: Por lo general cada fuente de energía requiere su propio circuito de control para cumplir con sus requisitos específicos. Por ejemplo, circuitos para aprovechar diferencias térmicas producen típicamente sólo de 0,02 a 0,15 voltios, mientras que las células fotovoltaicas de baja potencia pueden generar de 0,2 a 0,7 voltios y los sistemas de recolección de vibraciones pueden producir hasta 5 voltios. La coordinación de estas diferentes fuentes de energía en tiempo real para producir una salida constante es un proceso difícil.

Hasta ahora, la mayoría de los esfuerzos para aprovechar múltiples fuentes de energía simplemente han conmutado entre ellos, aprovechándose del que esté generando la mayor cantidad de energía en un momento dado, dice Bandyopadhyay, pero que puede desperdiciar la energía que está siendo entregada por las otras fuentes. “En lugar de eso, se extrae la energía de todas las fuentes”, dice. El enfoque combina la energía de múltiples fuentes al cambiar rápidamente entre ellas.

Otro desafío para los investigadores fue reducir al mínimo la energía consumida por el circuito de control en sí, para dejar lo más posible a los dispositivos que en realidad está alimentando — tales como sensores para medir la frecuencia cardíaca, azúcar en la sangre, o las tensiones en un puente o una tubería. Los circuitos de control optimizan la cantidad de energía extraída de cada fuente.

El sistema utiliza una innovadora arquitectura de doble vía. Usualmente, las fuentes de energía serían usadas para cargar un dispositivo de almacenamiento, tal como una batería o un supercondensador, que luego alimentarían al verdadero sensor u otro circuito. Pero en este sistema de control, el sensor puede ser alimentado desde un dispositivo de almacenamiento o directamente de la fuente, evitando el sistema de almacenamiento por completo. “Eso lo hace más eficiente”, dice Bandyopadhyay. El chip utiliza un solo inductor de tiempo compartido, un componente crucial para apoyar a los múltiples convertidores necesarios en este diseño, en vez de independientes para cada fuente.

David Freeman, jefe tecnólogo de soluciones de suministro de energía en Texas Instruments, que no participó en este trabajo, dice: “El trabajo que se realiza en el MIT es muy importante para permitir la recolección de energía en diferentes entornos. La capacidad de extraer energía de varias fuentes diferentes ayuda a maximizar la potencia para una mayor funcionalidad de sistemas como los nodos de sensores inalámbricos”.

Sólo recientemente, dice Freeman, compañías como Texas Instruments han desarrollado microcontroladores de muy baja potencia y transceptores inalámbricos que podrían ser alimentados ​​por esas fuentes. “Con innovaciones como éstas que combinan múltiples fuentes de energía, estos sistemas pueden ahora comenzar a aumentar la funcionalidad”, dice. “Los beneficios de operar desde múltiples fuentes no sólo incluye la maximización de la energía máxima, sino que también ayuda cuando puede ser que una sola fuente de energía esté disponible”.

El trabajo ha sido financiado por el Interconnect Focus Center, un programa combinado de la Defense Advanced Research Projects Agency y compañías en las industrias de defensa y de semiconductores.

Reimpreso con permiso de MIT News.

Fuente
http://web.mit.edu/ (en inglés)

Leave a comment