Científicos en una misión que busca calor planetario han detectado la primera luz infrarroja de una super-Tierra – en este caso, un planeta a unos 40 años luz de distancia. Y de acuerdo a sus cálculos, 55 Cancri e, un planeta de apenas el doble de tamaño de la Tierra, está arrojando mucho calor.
Jennifer Chu, MIT News Office. Original (en inglés).
A un tostado de 2038 grados Celcius, el planeta es lo suficiente caliente para licuar acero. Y no hay mucho alivio del calor abrazador: Investigadores del MIT (Massachusetts Institute of Technology – Instituto Tecnológico de Massachusetts) y otras instituciones dicen que al planeta le faltan las superficies reflectoras como capas de hielo, en su lugar absorbiendo la mayoría del calor de su estrella – así como los océanos oscuros de la Tierra atrapan calor del sol.
Desde el descubrimiento del planeta en el 2004, científicos han desenterrado varias de sus propiedades; los nuevos hallazgos, publicados en la edición actual de Astrophysical Journal Letters, expanden el perfil físico de 55 Cancri e. El planeta orbita la estrella 55 Cancri, parte de la constelación de Cáncer con forma de cangrejo, que es lo suficientemente brillante para ser visto con el ojo desnudo.
Usando telescopios en el suelo y en el espacio, científicos examinan patrones de luz de una estrella para determinar los rastros de planetas alrededor de él. Reducciones periódicas en la luz estelar indican que un planeta ha transitado, o pasado en frente de, su estrella. De estos datos, los científicos ahora han calculado el radio de 55 Cancri e (el doble del de la Tierra) y la duración de su órbita (18 horas, contra la nuestra de 365 días).
Mientras que el brillo estelar le permite a los investigadores detectar cambios en la luz estelar, es mucho más difícil detectar la luz en cualquier longitud de onda – visible o infrarroja – del planeta mismo.
“Este planeta está tan cercano a la estrella que es irradiado fuertemente”, dice el coautor Brice_olivier Demory, un posdoctorado en el Departamento de Ciencias de la Tierra, Atmosféricas y Planetarias. “Es como en la película ‘Avatar’, donde Pandora orbita el gigante gaseoso Polifemo. Viendo Polifemo desde Pandora da la idea de qué tan grande debería de verse la estrella desde 55 Cancri e”.
Demory dice que aislando el calor del planeta del calor masivo emitido de su estrella sería como detectar el calor de una vela entre un arreglo de 10,000.
Super-Tierra super-caliente
Impávido por dicha tarea, Demory trabajó con Sara Seager, la profesora de Ciencia Física y Planetaria de la clase de 1941 en el MIT, e investigadores del Instituto Kavli para Investigación Astrofísica y Espacial del MIT, la Universidad de Maryland, la Institución Carnegie de Washington y la Universidad de Liege en Bélgica para detectar las emisiones termales del planeta.
El grupo obtuvo observaciones del Telescopio Espacial Spitzer de la NASA, que monitorea radiación infrarroja emitida por objetos en el sistema solar y más allá. Demory y sus colegas fijaron el telescopio en 55 Cancri e, observando la estrella durante una ventana de seis horas durante la que el pequeño exoplaneta pasó dentás de ella – un fenómeno conocido como ocultación.
Demory midió la luz de la estrella antes y después de la ocultación del planeta, descubriendo una reducción de un minuto cuando la estrella eclipsó completamente el planeta. Para asegurarse de que la reducción no era solamente una variación, el equipo obtuvo tres grupos de datos más para la misma ventana orbital, y analizaron todos los cuatro grupos de datos juntos.
“Cuando juntas todos los datos, ves una bella disminución de luz que claramente muestra la luz del planeta que desaparece”, dice el coautor Michael Gillion, investigador principal del programa del telescopio Spitzer. “Esta es la primera vez que vemos la luz de un planeta tan pequeño”.
De la luz infrarroja del planeta, los investigadores calcularon precisamente su temperatura – unos abrazadores 2,038° C. Con tan altas temperaturas, Demory postuló que el planeta es probablemente algo oscuro, no contiene superficies reflectoras como capas de hielo, y probablemente absorbe la mayoría del calor dado por su estrella.
La temperatura del planeta también podría darle a los investigadores una pista sobre su atmósfera. 55 Cancri e orbita su estrella muy similar a como la luna circula la Tierra, siempre presentándole la misma cara. Demory sospecha que mucho del calor de Cancri e se queda en el “lado de día” del planeta, y que sería difícil que circulara tan altas temperaturas al lado oscuro del planeta: En otras palabras, es improbable que el planeta super-caliente tenga vientos fuertes.
Phil Armitage, un profesor asociado de astrofísica en la Universidad de Colorado, dice que es extremadamente difícil para cualquier instrumento – incluyendo el telescopio Spitzer – hacer la detección directa de un exoplaneta. El ve la detección del grupo como “un gran ejemplo de realmente llevar un instrumento a sus límites”.
El añade que la luz infrarroja del planeta ayudará a identificar más características de esta super-Tierra en particular.
“Las super-Tierras son fascinantes objetos por que no tienen ningún análogo en el sistema solar”, dice Armitage. “No tenemos una idea clara de como se formaron o incluso de lo que están hechas. Es un misterio que requiere datos más allá de la masa del planeta y el radio para resolverlo”.
Siguiendo adelante, Demory espera obtener más datos para mapear la luz infrarroja del planeta conforme completa una órbita alrededor de su estrella. Los resultados podrían iluminar las diferentes fases del planeta conforme circula la estrella, similar al creciente y menguante de la luna de la Tierra.
Seager dice que adicionalmente a estudiar el perfil físico de 55 Cancri e, las técnicas del grupo podrían ser adoptadas para encontrar otros exoplanetas en el universo – incluso, quizá, aquellos tan pequeños como la Tierra.
“Estamos yendo hacia planetas más y más pequeños con técnicas que ya están establecidas”, dice Seager. “Una vez que descubres uno, quieres encontrar más. Y hay mucho exoplanetas”.
La investigación está basada en observaciones hechas con el Telescopio Espacial Spitzer, que es operado por el Jet Propulsion Laboratory (JPL – Laboratorio de Propulsión de Jets) y el Instituto de Tecnología de California bajo un contrato con la NASA. Patrocinio para este trabajo fue proporcionado por la NASA a través de una beca dada por JPL/Caltech.
Reimpreso con permiso de MIT News.
Fuente
http://web.mit.edu/ (en inglés)